

Impacts of public acceptance and willingness to pay on achieving target of renewable energy resources in Japan

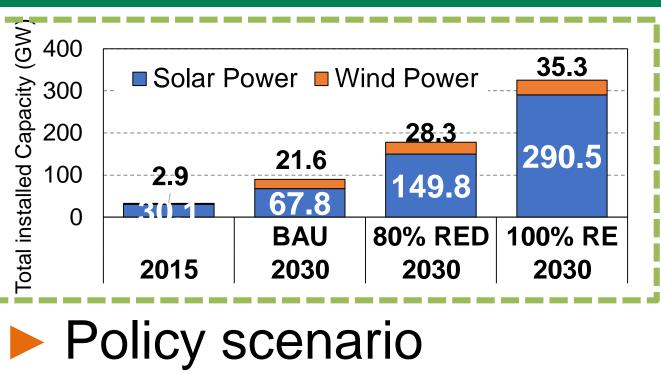
Lu GAO*, Yuki HIRUTA and Shuichi ASHINA, National Institute for Environmental Studies, Japan

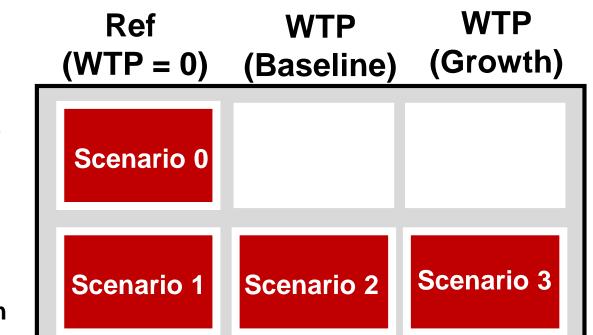
1. Introduction

Japan decided a GHG reduction target of 18% by 2030.

To achieve this target, electricity production by renewable energy resources expect to play a key role

Although the higher capital cost for renewable energy, there is a movement to defray the additional cost, impacting their further diffusion


► We have developed series of models to simulate, How well the WTP will impact on the renewable energy?

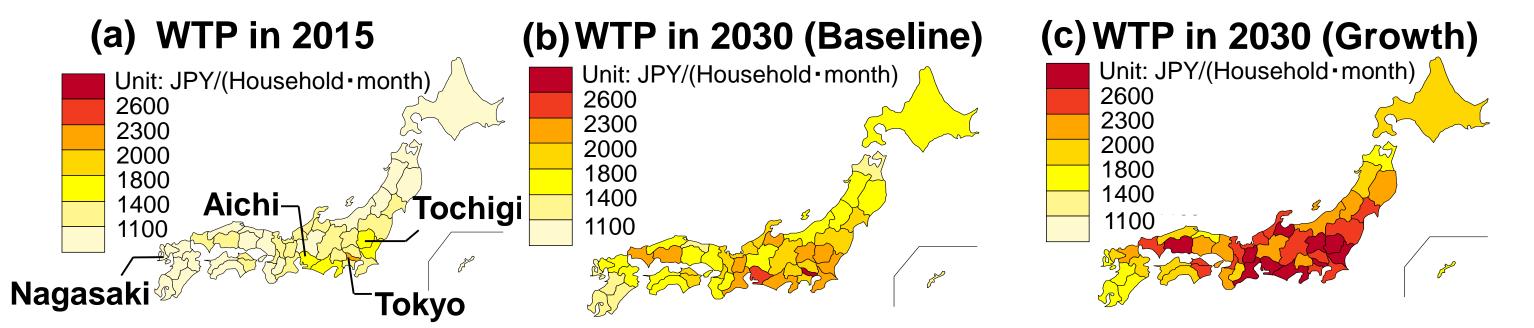

2. Description of Data

4. Future Scenario Setting

Installed capacity for RE

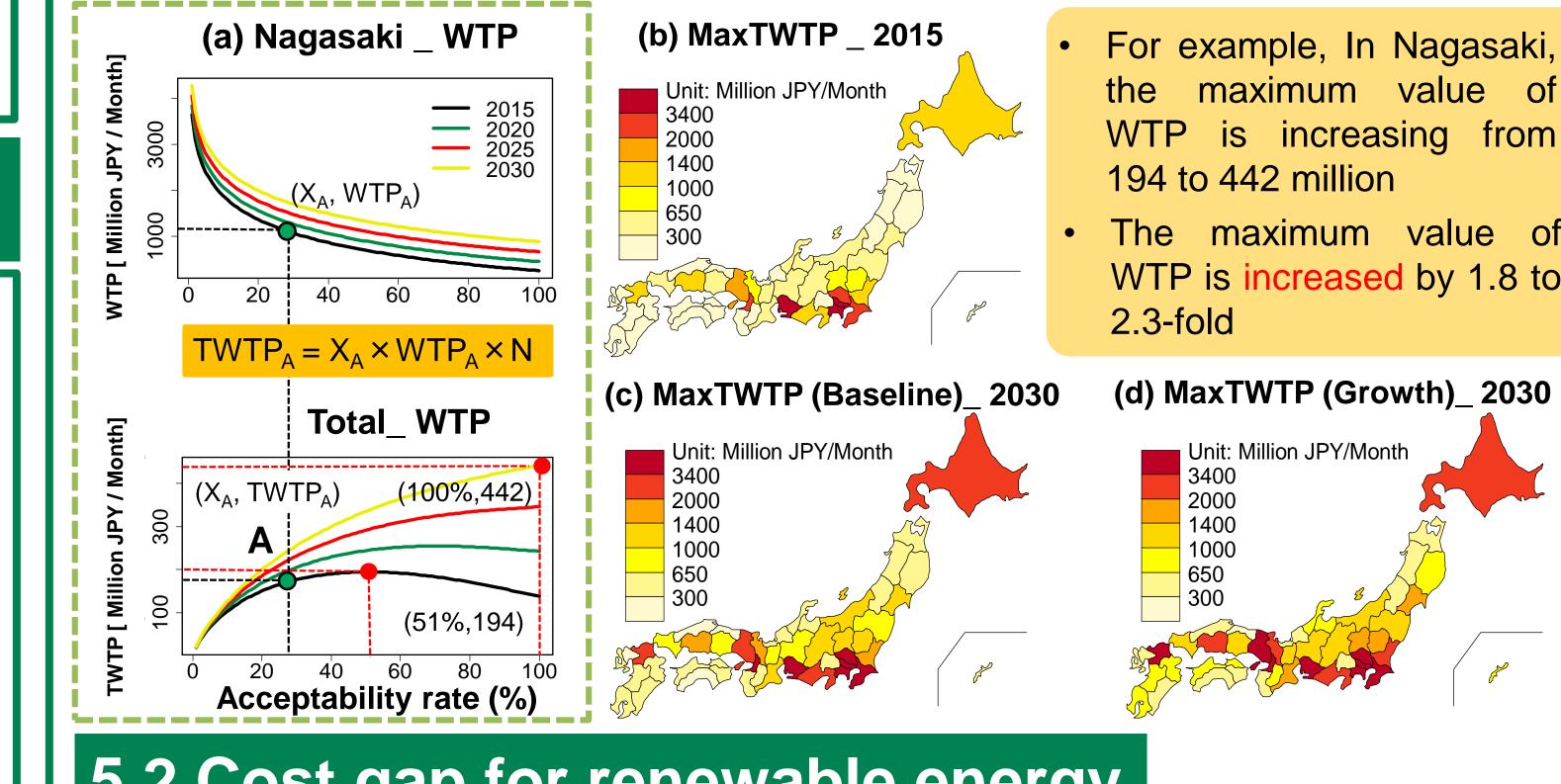
- **BAU**: Development patterns as the past 80% RED: 80% reduction in GHG
- **100% RE:** All of energy is supplied by RE
- Socioeconomic condition
- **Baseline**: Economy will grow at the rate of current potential growth
- Constant **Economic Growth Achieved Case:** Capital cost policies of Abenomics for overcoming Capital deflation and attaining economic Cost Reduction revitalization

Key word: WTP, Japan, CVM +renewable, green, electricity, power, wind, solar, photovoltaic and hydro


Author	Survey Year	Survey Area	WTP	Object analyzed
Nomura and Akai (2004)	2000	Japan	1956	WTP for promoting renewable
Nomura (2009)	2001	Japan	1893	WTP for promoting renewable
Baba and Tagashira (2002)	2001	Kagoshima	239	WTP for promoting green electricity
Teraoka (2002)	2001	Tohoku, Kanto, Kyushu	1199	WTP for promoting renewable
Fukae (2003)	2002	Fukushima, Niigata, Fukui, Tokyo, Osaka	279	WTP for supporting utility investment in solar power
Takahashi and Nakagome (2004)	2002	Kanto, Kansai	1445	WTP for promoting renewable
lse (2006)	2005	Japan	5410	WTP for promoting 100% wind power
Ito et al. (2012)	2005	Japan	1311	WTP for investment in solar power
Tagashira and Baba (2007)	2005	Tokyo	277	WTP for promoting green electricity
Goto and Ariu (2011)	2009	Japan	726	WTP for promoting 100% renewable energy
Matsuoka (2014)	2012	Hokkaido, Aomori, Ibaraki, Chiba, Shizhuoka, Wakayama, Kochi	421	WTP for promoting offshore wind power
Murakami et al. (2015)	2013	Japan	3037	WTP pay for 1% increase in renewable
Hironaka and Hondo (2017)	2015	Aichi, Shizhuoka	665	WTP for promoting renewable
Nakamura (2018)	2015	Nagano	576	WTP for mitigate climate change and to reduce reliance on nuclear power generation

3. Methodology

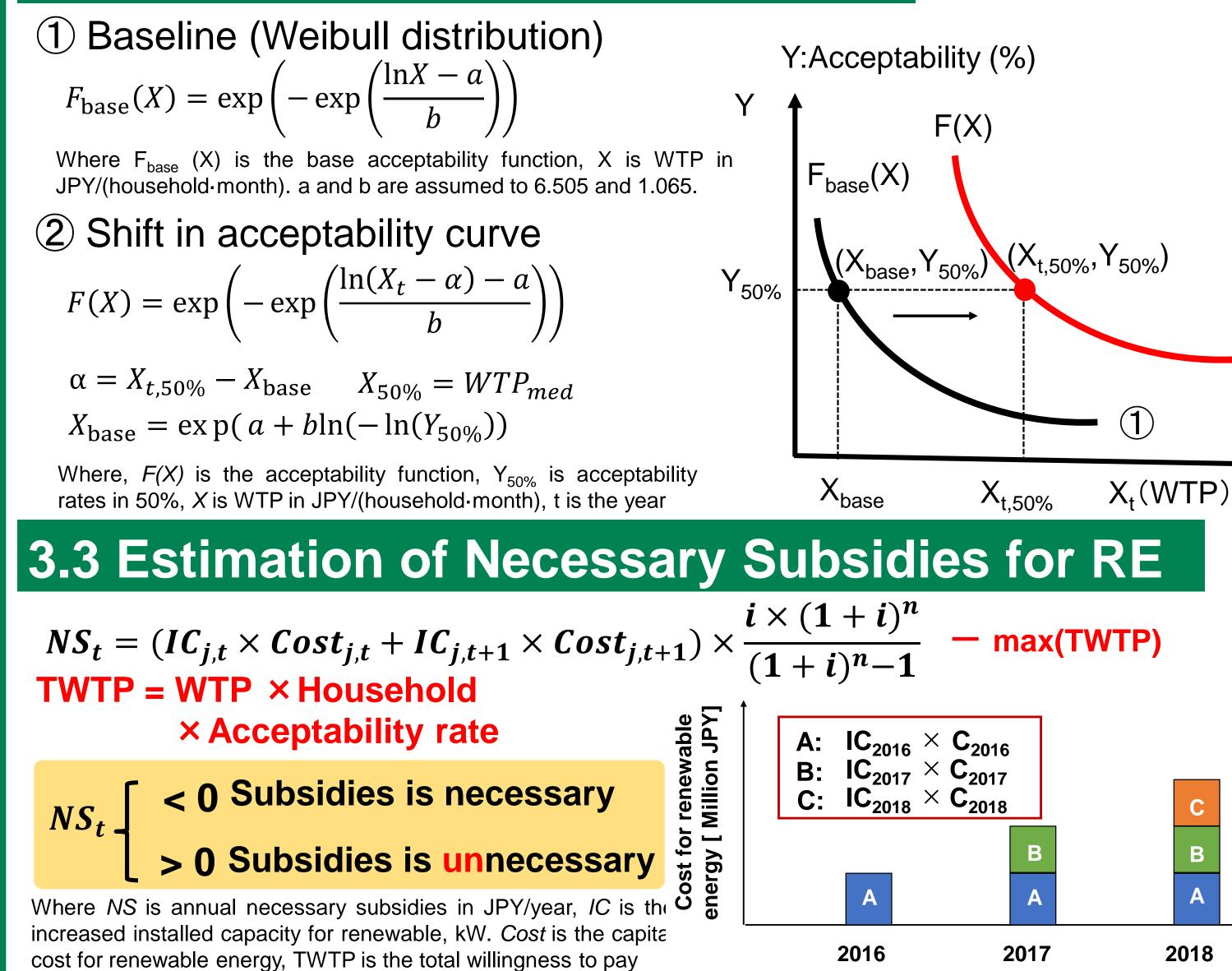
3.1 Estimation of WTP


5. Result and Discussion

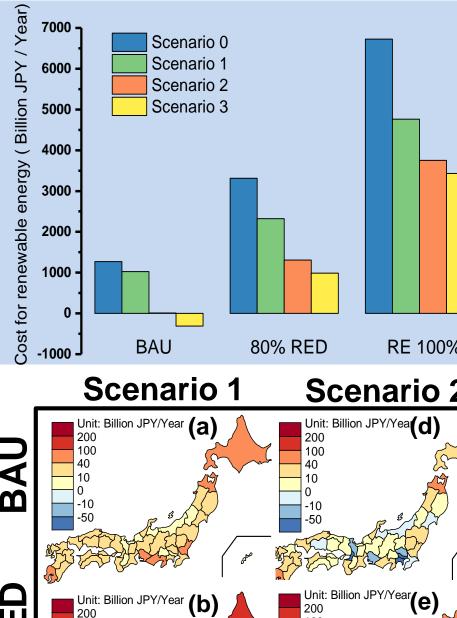
5.1 Prediction of the medium value of WTP

- Median value of WTP increase from 1,200 to 2,200 JPY/(Household month)
- WTP is higher in Tokyo, Aichi, Tochigi \rightarrow a higher income
- WTP in baseline is less than in economic growth achieved case

5.2 Prediction of total WTP

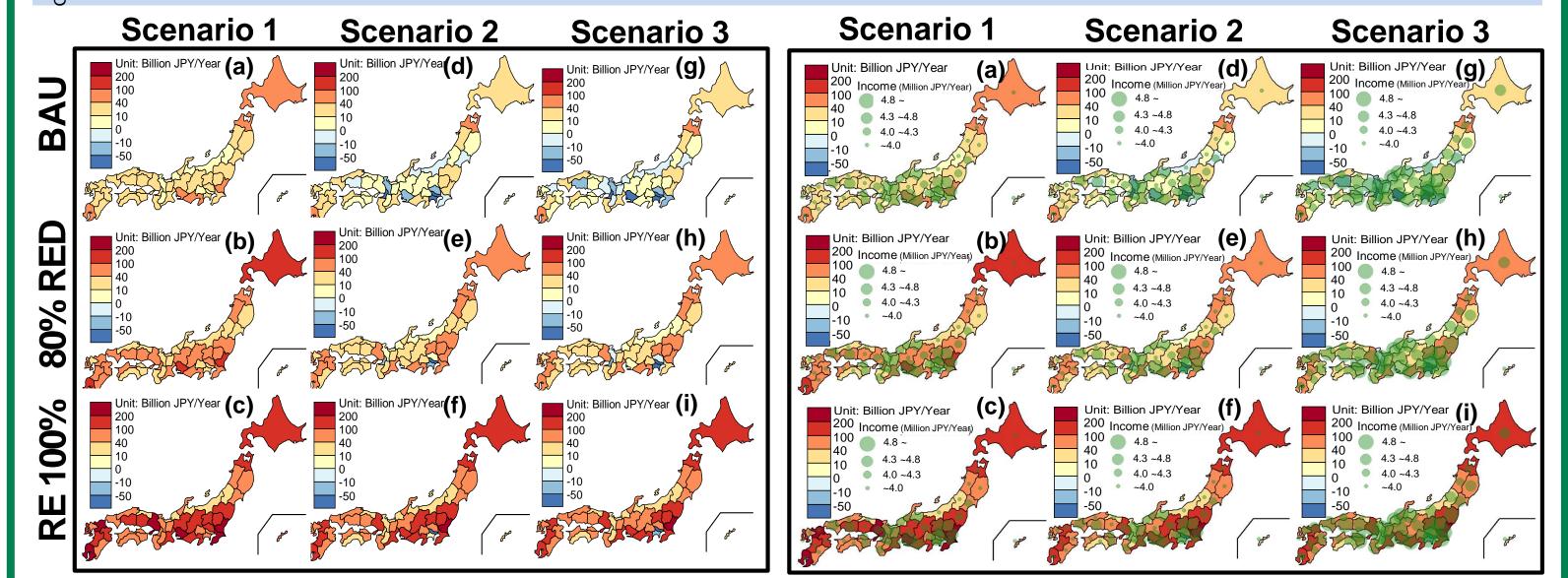

- For example, In Nagasaki, maximum value of is increasing from
- maximum value of WTP is increased by 1.8 to

Meta-regression was used to forecast the WTP


WTP_{med} = f (Age, Gender, Income, Education, RE_{share}, YEAR)

Where Age is the average for target area, Gender is the percentage of female share within total population (%), *Income* is the annual average household income (JPY), *Education* is the percentage of the adult population held a university degree (%), Reshare is the percentage share renewables of total energy (%) and YEAR is the survey year

3.2 Estimation of Acceptability rate



5.2 Cost gap for renewable energy

 $(\mathbf{2})$

- Annual cost for increasing the renewable energy are expected to be within $1.3 \times 10^3 \sim 6.7 \times 10^3$ Billion
- These costs will decrease to $1.0 \times 10^3 \sim 4.8 \times 10^3$ Billion, attributing to the reducing of production cost
- Both considering the reduced production cost and WTP, these costs will continued **decrease** to $-0.3 \times 10^3 \sim 3.8 \times 10^3$ Billion

 Nakamura, H.: Willingness to know and talk: Citizen attitude toward energy and environmental policy deliberation in post-Fukushima Japan, <i>Energy Policy</i>, Vol. 115, pp. 12-22, 2018. Nomura, N.: Willingness to Pay for Environmental Sound Energy Systems, <i>Journal of the Japan Institute of Energy</i>, Vol. 88, pp. 140-146, 2009. Murakami, K., Ida, T., Tanaka, M., Friedman, L.: Consumers' willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan, <i>Energy Economics</i>, Vol. 50, pp. 178-189, 2015. Ise, K.: Estimated Willingness to Pay for Green Electricity by Using Contingent Valuation Method, <i>Studies in Regional Science</i>, Vol. 36, pp. 871-884, 2006. 	 9)Takahashi, R., Nakagome, Y.: Contingent Valuation Method Applied to Survey on Personal Preferences on Choice of Electric Power Source, <i>Transactions of the Atomic Energy Society of Japan</i>, Vol. 3, pp. 51-58, 2004. 10)Fukae, C.: Evaluation using Contingent Valuation Method for the Effect of the Control on the Discharge of Carbon Dioxide by Photovoltaic Power Generation and Nuclear Power Generation, <i>INSS journal</i>, Vol. 10, pp. 71-81, 2003. 11)Ito, M., Oda, T., Miyazaki, T., Kawasaki, N., Taguchi, S., Sugihara, H., Akisawa, A., Kurokawa, K.: An Installation willingness and a Conjoint Analysis of Photovoltaic Systems by Questionnaire Survey in Japan, <i>Journal of Japan Society of Energy and Resources</i>, Vol. 33, pp. 	Acknowledgment This research was supported by Environment Research and Technology Development Fund (2-
 5)Teraoka, Y.: Surevy of Residents of Kagoshima City on the Cost of Electricy Power Generated by Bio-fuels, <i>Research bulletin of the Kagoshima University forests</i>, Vol. 30, pp. 27-32, 2002. 6)Nomura, N., Akai, M.: Willingness to pay for green electricity in Japan as estimated through contingent valuation method, <i>Applied Energy</i>, Vol. 78, pp. 453-463, 2004. 7)Baba, K., Tagashira, N.: Household Customers' Attitude for Green Power Promotion, <i>Environmental Systems Research</i>, Vol. 30, pp. 9-17, 2002. 8)Matsuoka, K.: Social Acceptance of Wind Energy Projects, <i>Journal of JWEA</i>, Vol. 38, pp. 34-37, 2014. 	 1-8, 2012. 12)Tagashira, N., Baba, K.: Residential Customers' Attitudes toward Energy Based Green Power Program, <i>Journal of Japan Society of Energy and Resources</i>, Vol. 29, pp. 21-28, 2007. 13)Goto, H., Ariu, T.: An Analysis on Consumers' Preferences toward Home Solar Power Generation System after the Great East Japan Earthquake, <i>Central Research Institute of Electric Power Industry Research Report</i>, 2011. 14)Hironaka, Y., Hondo, H.: Estimating Regional Benefits of Renewable Energy Installation Using Willingness to Pay, <i>Journal of the Japan Institute of Energy</i>, Vol. 96, pp. 52-57, 2017. 	1711) of Environmental Restoration and Conservation Agency and Ministry of the Environment Japan.

- For Tokyo, Kanagawa and Osaka, additional investment subsidy for renewable energy is unnecessary
- In the scenario 3, the number of the area which require subsidies are lower than that \rightarrow a higher income in scenario 2

6. Conclusion and future work

• From 2015 - 2030 -

 \rightarrow increase from **1,200 to 2,200** JPY Median value of WTP

Maximum value of TWTP \rightarrow increase from 0.5 × 10³ to 1.1 × 10³ billion JPY

□ Future work

- **Expand** the method into **other countries or areas**
- Evaluation the impact of WTP on energy use by models