

The Importance of Producer Price Markups for Carbon Tax Evaluations: Evidence from Taiwan

Yi-Hua Wu¹, Jin-Li Hu², Tzu-Yar Liu¹, Toshihiko Masui³

1. Industrial Technology Research Institute

2. National Chiao Tung University

3. National Institute for Environmental Studies

Carbon Tax/Carbon Trade

 One of policies to combat climate change

Competitive Market Setting for CGE

 Many CGE models choose competitive market for the investigation of carbon pricing

In reality, not all industries are competitive

- Industries make profits
- Firms could be able to set prices higher than marginal costs

Importance of Price Setting Ability

 $Profit = P_{Y,t}(j)Y_t(j) - Cost_t(j)$

- Competitive market: firms are price takers and cannot affect prices
- The market determine the prices

First order conditions:

$$P_{Y,t}(j) = MC_t(j)$$

Importance of Price Setting Ability

 $Profit = P_{Y,t}(j)Y_t(j) - Cost_t(j)$

• Price markups over marginal costs:

Difference

• Competitive

$$P_{Y,t}^c(j) = MC_t(j) -$$

• Price markups

$$P_{Y,t}^{m}(j) = \frac{MC_{t}(j)}{(1 - \varepsilon_{Y}(j))}$$

 $\varepsilon_V(\mathbf{j}) > 0$

If the carbon tax has the same effects on marginal costs

 $P^m_{Y,t}(j) > P^c_{Y,t}(j)$

Purpose

 Compare the impacts of firm pricing strategy on policy evaluation (carbon tax, in this paper)

Model

Intuitions

• Elasticity $\eta_{y(i)}$ higher \rightarrow substitute easily \rightarrow Monopolistic power is low \rightarrow Low price markups over marginal costs

Model

Price Markups

• $\eta_{y(i)}$ controls elasticity and price markups

Carbon Emission Goal

Carbon tax is launched to achieve the emission target

CO2 Emissions: Reference and Target Path

Million Tonnes of CO₂e

Price markups over marginal costs

- Four elasticity values: benchmark(+0), +0.5, +1.0, +2.0, +4.0
- High elasticity → low price markups

Consumer Price Index (CPI)

High elasticity, low markups on CPI

Less impacts on GDP

■2020 ■2025 ■2030

Conclusions

The Carbon Tax Evaluations are related to the Specifications on Market Structure

 High Price Markups→Enlarge the impacts of carbon tax burdens →large GDP losses

Competitive Market Structure might mitigate the economic losses

- Reforms in the Japanese electricity market since 1995 in order to enhance competitiveness
- Reforms in the Taiwanese electricity market.

Appendix

Effects on Demand Side

● High Elasticity→Low impacts on demand side

■+0 ■+0.5 ■+1.0 ■+2.0 ■+4.0

Effects on Demand Side

● High Elasticity→Low impacts on demand side

Domestic v.s. Foreign Markets

 Share of domestic goods market increases after the launch of carbon tax.

High elasticity → Low price markups → Lower domestic share

 $D_{t}^{s} = \frac{\sum_{j=1}^{26} D_{t}(j)}{\sum_{i=1}^{26} Y_{t}(j)}$