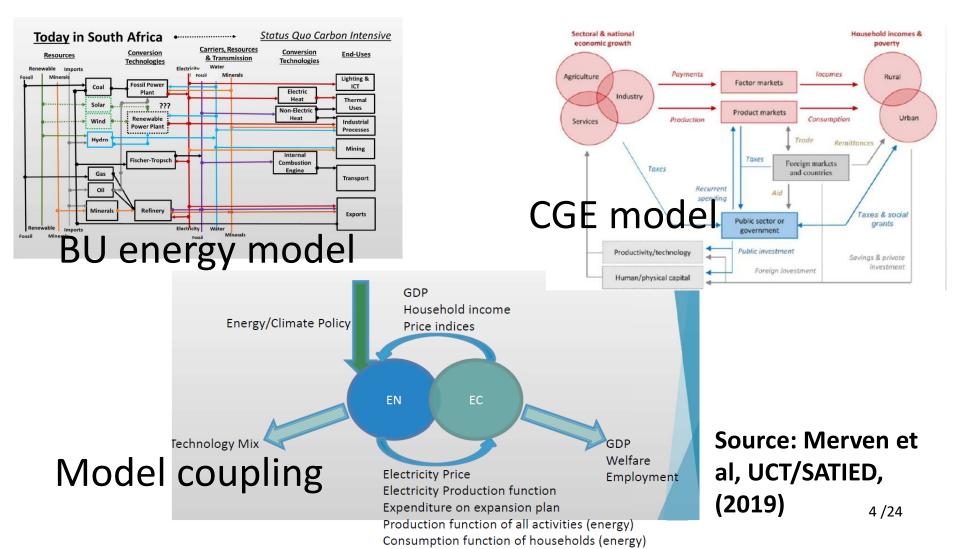
25th AIM international workshop NIES, Tsukuba, 19 November 2019

How choosing a Carbon Tax revenue recycling scheme can & cannot contribute to decarbonizing an economy An analysis with IMACLIM South Africa

Jules Schers (CIRED, UCT/Expertise France) Co-authors: Frédéric Ghersi, Franck Lecocq (CIRED)

Funding or support:

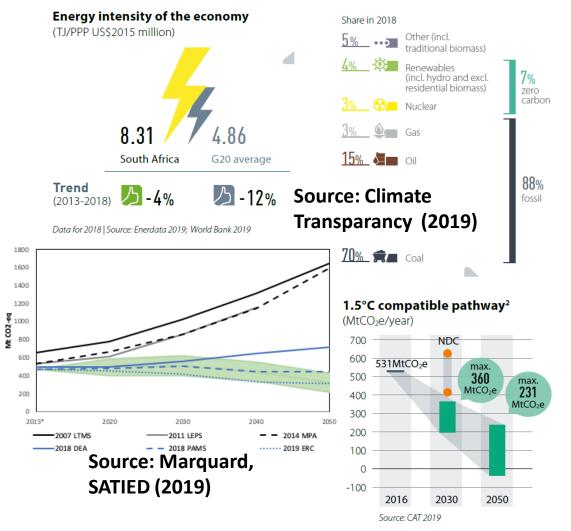
IMACLIM « hybrid » CGE modelling network & model coupling developments


- From integrated BU energy tech-rich *Recursive*, to KLEM, and detailed socio-economic rich models:
 - **Global** (IAM), IMACLIM-*R* monde, CIRED
 - **France** (2 versions), CIRED, *Recursive* and using reduced forms of BU models
 - **Brazil**, COPPE/UFRJ, soft-coupling to MESSAGE and LEAP & land use models
 - **South Africa**, CIRED with UCT, exogonous tech coefficient from SA TIMES
 - India, IIMA, with AIM/end use model
 - **China**, Tsinghua University, KLEM TIMES coupling
 - Saudi Arabia, CIRED & EDF with KAPSARC, with KEM bottom-up model
- Under development:
 - **Argentina,** Fondacion Bariloche, coupling with LEAP model
 - **Russia**, HSE Moscow
 - Viet Nam, USTH, Ha Noi
 - **Senegal,** ENDA, coupling with LEAP model
 - **Ireland,** CIRED with UCC, coupling in TIAM-KLEM model
- Next week, 27-29 Nov : 5th international IMACLIM workshop in Cape Town

Content overview

- 1. Introduction : Problem definition
- 2. Methodology : IMACLIM South Africa
- 3. Scenarios & results
- 4. Analysis : Why choice of revenue recycling scheme matters or not for decarbonizing the economy
- 5. Recommendations

The other model of UCT: SATIM-GE: coupled, optimisation models for South Africa


Model comparison improves model quality and insights

1. Introduction / Problem definition

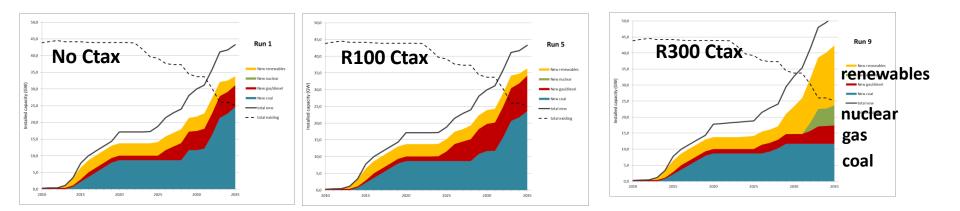
Overview of SA's GHG emissions & climate policy

- Very high energy and CO₂ intensity of the economy;
- Big minerals sector, Power is 90% from coal, and Coalto-Liquids used for fuels;
- SA's NDC: peak-plateaudecline is outdated by recent trends, but insufficient for 1.5°C
- SA's Carbon Tax, since June
 2019 : 120 ZAR/tCO₂ (~\$6),
 but 60-95% industry
 exemptions

South Africa's economic problems (despite progress since 1994 / end of Apartheid)

- Low growth, High income inequality, and High unemployment for low & medium skilled labour:
 - Spatial segregation remaining from Apartheid era : accompanied by high transport costs and crime rates;
 - Problems with educational quality (Spaull, 2013): Segmented labour market
 - ➤ High-skill labour shortage.
- Guivarch et al. (2010): labour costs important for estimating both costs and benefits of transition to a low carbon economy : Rigidities must be accounted for.
- Could carbon tax revenue be used to lift economic constraints?
 - First exercise: Analyse growth, and Ctax for tax reform or transfers.

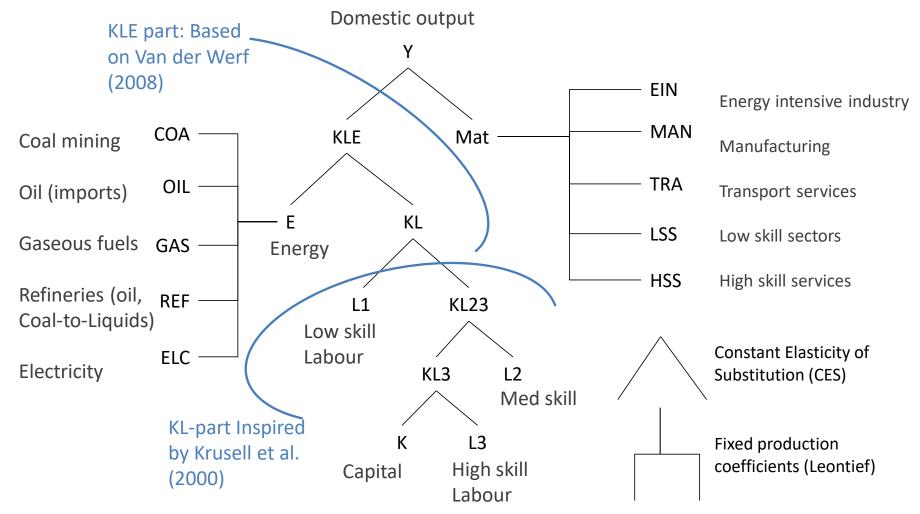
2. Methodology : IMACLIM South Africa


Main characteristics of IMACLIM-ZA

- CGE, because 99% of jobs in non-energy sectors: macro-economic feedbacks thus very important!
- IMACLIM "hybrid", open economy CGE, with dual accounting of values & quantities of energy flows;
- Myopic simulation in a one-step projection from 2005 to 2035;
- 3 Labour markets segmented by skill (Low, Medium, High) with for each a wagecurve (Blanchflower & Oswald)
- ➤ 5 « income-skill » household classes;
- Secondary income distribution: direct taxes, social security & transfers, for Firms, Government, the 5 Hhs, Rest of the World;
- Capital market: Amortisation of physical capital separated from Net Operating Surplus; NOS modelled as a fixed mark-up; modelling net saving/borrowing; debt accumulation; endogenous rate of interests & dividends.

Technology in electricity sector by Leontief coefficients per scenario

Hybridisation of I-O table with energy balance & price data:


- Allows better accounting of energy in economy
- To fit I-O to Bottom-Up energy modelling insights and e.g. integrate rigidities in energy supply and demand
- Leontief coefficients for ELC per Ctax scenario from SA TIMES*:

Future plans: estimate reduced forms of SATIM and expand.

^{*} Thanks to Bruno Merven and colleagues of the Energy Systems research group of the University of Cape Town. ^{10/24}

Nested CES KLEM production function for other sectors

3. Scenarios & results

Carbon tax revenue recycling scenarios

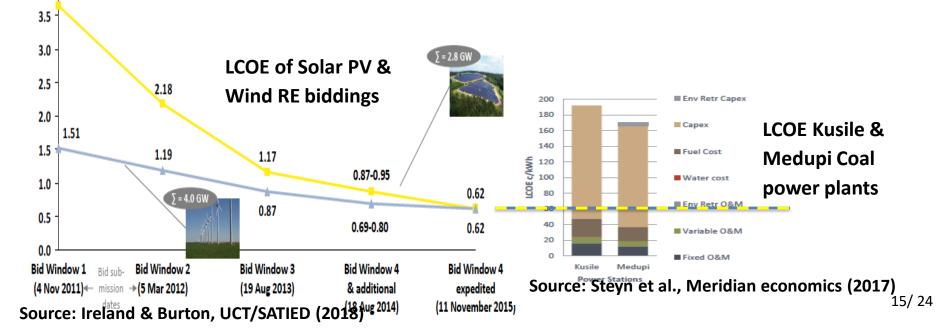
- Revenue Recycling scenarios for 2 carbon tax rates:
 - 1. Per capita Lump Sum for all households
 - 2. Reduction of profit taxes, with:
 - *Case 1: No-change* in profit mark-up rates *(fixed)*
 - Case 2: Reduction of profit mark-up rates
 - 3. Reduction of a Sales tax on final consumption
 - 4. Subsidies to labour
- \succ Economic impacts *small* for Ctax 100 ZAR₂₀₀₅/tCO₂ (20 $\$_{2017}$ /tCO₂)
- > Next: Results for Ctax 300 ZAR $_{05}$ /tCO $_2$ (60 \$ $_{2017}$ /tCO $_2$)

Choice of revenue recycling matters for GDP, jobs, and inequality, but not much for CO2-intensity

	GDP growth 2005 to 2035	Broad unemploy- ment rate	Energy CO ₂ emiss. (Mt)	CO ₂ intensity GDP (kg CO ₂ /\$ _{'13} GDP)	Ratio of class 5 over 1 income
Base Year (2005)	-	39%	443	1.54	42
Reference (2035, No Ctax)	+141%	24%	728	1.05	45

Results of revenue recycling of Ctax 300 ZAR₂₀₀₅/tCO₂ (60 $\$_{2017}$), vs Reference:

	GDP	Nr of jobs	CO ₂ emissions	CO2 intensity of GDP	Class 5 over 1 income ratio
Lump Sum transfer	-20%	-19%	-49%	-36%	-49%
Profit tax cut & Constant margins	-20%	-20%	-49%	-36%	-4%
Profit tax cut & Lower margins	-12%	-11%	-44%	-36%	-2%
Sales tax reduction	-11%	-11%	-44%	-37%	-2%
Labour subsidies	-8%	-6%	-43%	-38%	-4%


Absolute results likely too pessimistic, but comparison of schemes holds

- No border tax adjustments, no foreign Ctax;
- Labour market maybe too rigid;

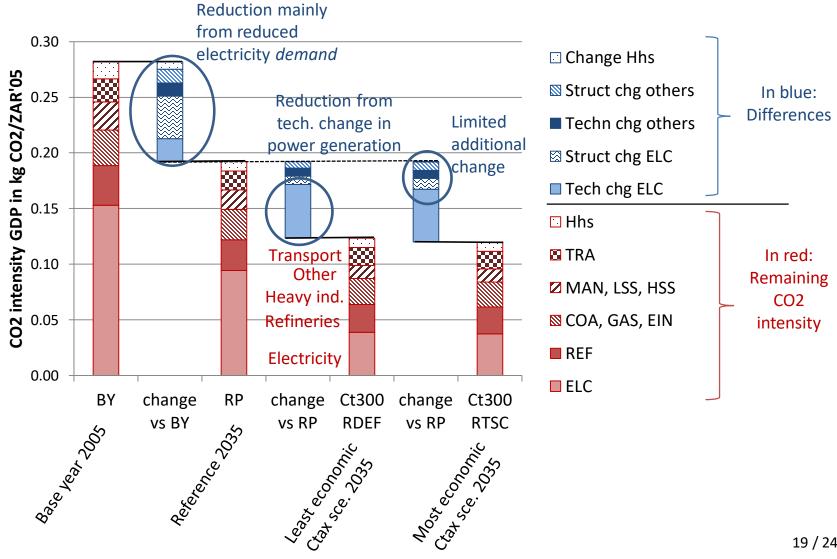
4.0

3.65

- No fuel switching in refineries and transport;
- Average tariff in R/kWh (Apr-2016-R) Model not up-to-date for RE now 2 to 3 times cheaper than newest coal in SA :

4. Analysis : Why choice of revenue recycling scheme matters or not for decarbonisation

Economic equilibrium requires that an increase of revenue at one place (CO_2 tax) is compensated at another place


... all other things (e.g. productivity, trade) almost equal

Comparison with RP for R300 Ctax & Recycling via:	Lump sum	Corporate p + Fixed margins	rofit tax cut + Lower margins	Sales tax cut	Labour subsidies
Indirect taxes \rightarrow Ctax effect, unless recycling	+1.5%	+1.5%	+1.5%	+0.1%	+1.5%
Labour costs \rightarrow wage elasticity or recycling effect	-1.6%	-1.6%	-0.7%	-0.7%	-1.6%
Consumption of fixed capital → K intensity ELC and substitution effects	+0.3%	+0.3%	+0.3%	+0.3%	+0.3%
Net Operating Surplus \rightarrow mixed effects	-0.2%	-0.2%	-1.1%	+0.3%	-0.1%
Sum of primary income components (by definition 0)	0%	0%	0%	0%	0%
Energy intermediates costs \rightarrow indirect Ctax effect	+1.0%	+1.1%	+1.2%	+1.3%	+1.1%
Materials and services intermediates costs → substitution effect	-1.2%	-1.1%	-0.6%	+0.8%	-0.6%
Import costs \rightarrow substitution effect	+1.0%	+0.8%	+0.4%	+0.9%	+0.3%
Sum of non-income components	+0.8%	+0.7%	+1.0%	+2.9%	+0.8%
Total change in aggregate costs of supply over GDP	+0.8%	+0.7%	+1.0%	+2.9%	+0.8%

Choice of revenue recycling matters for decarbonisation, because ...

- Economically succesful revenue recycling schemes (Labour subsidies, and Profit tax reduction with reduced margins) can reduce negative economic consequences of carbon taxation and thus increase public support,
- ... while such recycling of revenue into a reduction of costs of labour or production costs of energy-extensive sectors promotes labour (substituting energy) as a factor to production as well as consumption of energy-extensive products in intermediate or final consumption (vs energy-intensive).

However... only up to a certain limit: little decarbonisation beyond Reference outside ELC

Energy costs have to rise due to limited efficiency gains (beyond Reference)

- Energy efficiency gains already high in Reference Projection:
- Price-elasticity of energy use is low in energy-intensive sectors;

	COA	GAS	REF	EIN	MAN	LSS	HSS	TRA
Reference	-15.5%	-1%	-3%	-11%	-30%	-22%	-37%	-4%
R100 Ctax avg	-19%	-2%	-3%	-14.5%	-41%	-28%	-48.5%	-5%
R300 Ctax avg	-21%	-3%	-3.5%	-18%	-51.5%	-34%	-58%	-6.5%
								\bigcirc

Allwood et al (2011): efficiency potentials in steel, cement, plastics, aluminium, and paper range from 23 to 40% - but what is their cost?

Allwood et al. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling Vol.55, pp 362-381

5. Recommendations

Recommendations

Policy:

- Even with expensive RE + rigid labour market SA can achieve its NDC while achieving significant economic growth at rates above current Carbon tax law;
- Recycling of Ctax revenue should reduce production costs, especially for use of labour or energy-extensive sectors, here: Labour subsidies;

Knowledge gaps:

- For higher decarbonisation with continued GDP growth, energy & material efficiency are very important, but little literature discusses the costs, e.g. capital and labour intensity of efficient technologies or efficiency measures;
- Also, it is unclear whether K-L and E-L price elasticities for CES production functions sufficiently capture labour-intensity (and productivity) of future low carbon technologies;
- Scenario not discussed: Explore investing Ctax revenue in education & training.

Thank you for your attention!

Jules Schers schers / *at* / centre-cired.fr

- PhD thesis: Jules Schers. Economic growth, unemployment and skills in South Africa: An Analysis of different recycling schemes of carbon tax revenue. Economics and Finance. Université Paris-Saclay, 2018. English. NNT: 2018SACLA039. tel-02293182
 - https://tel.archives-ouvertes.fr/tel-02293182/document
- Other publication for this study: EAERE 2019 conference paper: "The impact of carbon tax revenue recycling on GDP and employment in South Africa"
 - http://www.fleximeets.com/eaere2019/getpaper.php?fid=1301