Impact and adaptation assessment on rice yields in Vietnam

4th Sep., 26th. AIM-WS

Yuji MASUTOMI

Center for Climate Change Adaptation, NIES

Introduction

- Rice is the most important crop in Vietnam.
- However, there are very few studies on impact assessment on rice production in Vietnam.
 - no studies on adaptation assessment
- Climate-related impacts have already happened across Vietnam.

little water in dam

flooded paddy rice fields

• In order to adapt to the impacts, it is necessary to assess CC impacts and the effect of adaptive options.

Objective

- Assess the future climate impacts on rice production in Vietnam
- Assess the effects of adaptations

✓ using future climate projections and a crop growth simulation model

No	Мерц		Cost	Effect	Actor				
	inclu				Gov.	Scientist	Farmer	Company	
1	Change in variety (existing variety)	Easy	Low	Low			٧		
2	Change in agricultural management (e.g., planting date, fertilizer, etc.)	$\widehat{1}$	Low	Int.			V		
3	Change in planting crop		Low	Int.			٧		
4	Real time monitoring system		Int.	Int.	V	V		(√)	
5	Early warming system		Int.	Int.	V	V		(√)	
6	Seasonal forecasting system		Int.	Int.	V	V		(√)	
7	Climate and agricultural insurance		int.	Int.	(√)		٧	V	
8	Change in variety (new variety)		Int.	High	v	V	V	V	
~	enange the postnar rest system			LUSU	•		•	•	
10	Development of irrigation system		High	High	V			V	
11	Lond uso shango	Difficult	Lligh	Llink	2/			Л	
Categ	ory: Agricultural technology	CT and sm agricultu	art re	Agricultural finance		1	Infrastructure		

Three adaptive options:1. High temp. tolerant variety2. Drought tolerant variety3. Irrigation system

Method

Results: No adaptation

No adaptation, Vietnam

- RCP8.5 scenario will have the largest yield loss in the 2060s.
- The other scenarios will have small but negative yield loss.
 - ✓ Adaptations should be taken to reduce the negative impacts.

Adaptation (High temp. and drought)

High Temp. tolerance variety will have a large effect to reduce negative impacts.

Adaptation assessment

Yield increase by each adaption

	RCP	ADPT	2020s	2030s	2040s	2050s	2060s	
	RCP2.6	HT	1.8	2.0	1.8	1.8	2.1	
		DT	0.5	0.6	0.5	0.5	0.5	
		IRR	1.3	1.4	1.4	1.3	1.3	
		HT	1.4	1.7	2.1	2.0	2.2	UT. Lick tores tolowort
	RCP4.5	DT	0.5	5	0.5	0.5	0.5	HI: High temp. tolerant
		IRR	1.3	1.4	1.3	1.3	1.3	DI: Drought tolerant
1		HT	1.5	2.1	1.9	1.9	2.4	IRR: Imgation system
	RCP6.0	DT	0.5	0.5	0.5	0.5	0.6	
		IRR	1.3	1.3	1.3	1.4	1.4	
1		HT	1.9	2.1	2.6	2.9	4.1	
	RCP8.5	DT	0.6	0.5	0.5	0.5	0.5	
		IRR	1.4	1.3	1.4	1.4	1.3	

High Temp. tolerant variety will have a large effect to reduce negative impacts.

Adaptation (High temp. vs IRR)

- Effects of adaptations are different among provinces.
- Irrigation will have large effect in some provinces.

Summary

 RCP8.5 scenario will have the largest yield loss in the 2060s. The other scenarios will have small but negative yield loss in the 2060s.

>Adaptations should be taken to reduce the negative impacts.

- High Temp. tolerant variety will have a large effect to reduce negative impacts.
- Effects of adaptations are different among provinces.
 > It is necessary to identify and take effective adaptative options by provinces.

Thank you for your attention.