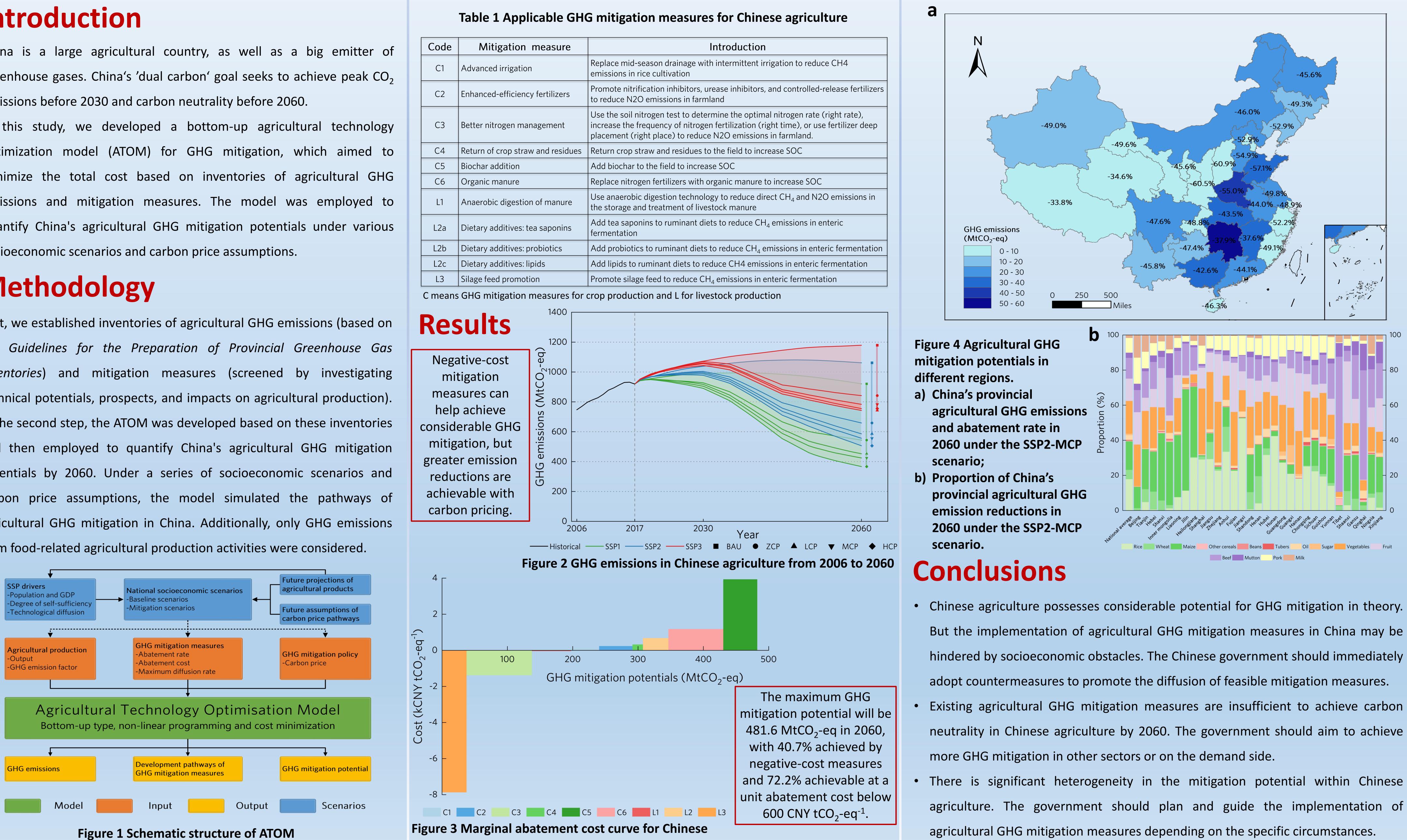


Yizhi Deng¹, Jing-Yu Liu^{1,2*}, Wei Xie³, Xiaomuzi Liu⁴, Jian Lv¹, Runsen Zhang⁵, Wenchao Wu⁶, Yong Geng^{1,2,7,8}, Julien Boulange⁹ 1 School of Environmental Science and Engineering, Shanghai Jiao Tong University, P. R. China; 2 Shanghai Institute of Pollution Control and Ecological Security, P. R. China; 3 School of Advanced Agricultural Sciences, Peking University, P. R. China; 4 École Polytechnique, France; 5 Graduate School of Frontier Sciences, Tokyo University, Japan; 6 Japan International Research Center for Agricultural Sciences (JIRCAS), Japan; 7 School of International and Public Affairs, Shanghai Jiao Tong University, P. R. China; 8 School of Business, Shandong University, P. R. China; 9 Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Japan


Introduction

China is a large agricultural country, as well as a big emitter of greenhouse gases. China's 'dual carbon' goal seeks to achieve peak CO₂ emissions before 2030 and carbon neutrality before 2060.

In this study, we developed a bottom-up agricultural technology optimization model (ATOM) for GHG mitigation, which aimed to minimize the total cost based on inventories of agricultural GHG emissions and mitigation measures. The model was employed to quantify China's agricultural GHG mitigation potentials under various socioeconomic scenarios and carbon price assumptions.

Methodology

First, we established inventories of agricultural GHG emissions (based on the Guidelines for the Preparation of Provincial Greenhouse Gas *Inventories*) and mitigation measures (screened by investigating technical potentials, prospects, and impacts on agricultural production). In the second step, the ATOM was developed based on these inventories and then employed to quantify China's agricultural GHG mitigation potentials by 2060. Under a series of socioeconomic scenarios and carbon price assumptions, the model simulated the pathways of agricultural GHG mitigation in China. Additionally, only GHG emissions from food-related agricultural production activities were considered.

Assessment of long-term mitigation scenarios in Chinese agriculture

	•••	
Code	Mitigation measure	Introdu
C1	Advanced irrigation	Replace mid-season drainage with intermit emissions in rice cultivation
C2	Enhanced-efficiency fertilizers	Promote nitrification inhibitors, urease inhi to reduce N2O emissions in farmland
С3	Better nitrogen management	Use the soil nitrogen test to determine the increase the frequency of nitrogen fertilizat placement (right place) to reduce N2O em
C4	Return of crop straw and residues	Return crop straw and residues to the field
C5	Biochar addition	Add biochar to the field to increase SOC
C6	Organic manure	Replace nitrogen fertilizers with organic ma
L1	Anaerobic digestion of manure	Use anaerobic digestion technology to redute the storage and treatment of livestock man
L2a	Dietary additives: tea saponins	Add tea saponins to ruminant diets to redu fermentation
L2b	Dietary additives: probiotics	Add probiotics to ruminant diets to reduce
L2c	Dietary additives: lipids	Add lipids to ruminant diets to reduce CH4
L3	Silage feed promotion	Promote silage feed to reduce CH ₄ emissio

agriculture in 2060 based on the SSP2 scenario assumptions.

agriculture. The government should plan and guide the implementation of

