29th AIM International Workshop – September 14-15, 2023

Study on the Distribution of Carbon Emission Reduction Potential of Urban Transformation Development

under the "Dual Carbon" Goal--Taking Guangzhou as an Example

Xie Yun-sheng¹ Yang Lei¹ Tu Ya-si¹ Wang Peng² Zhao Dai-qing² 1. Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, China 2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China

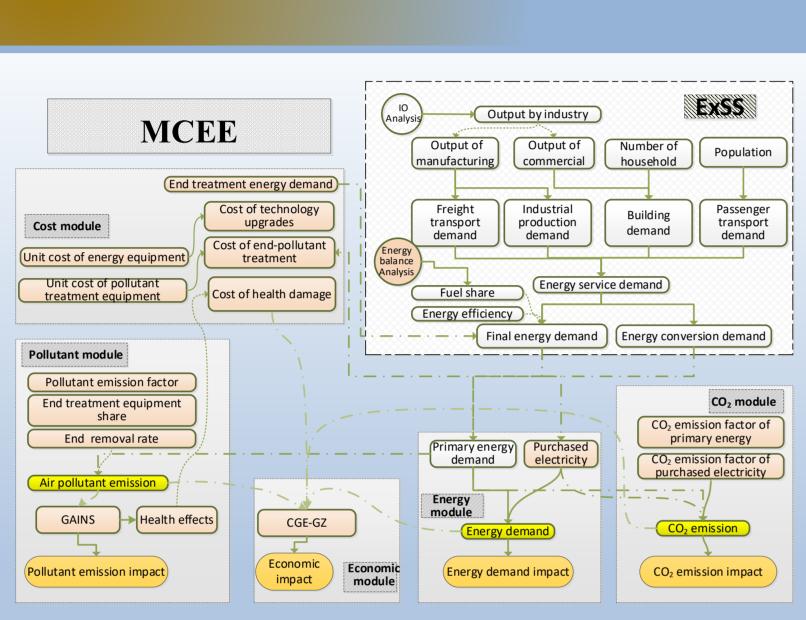
Methods

MCEE Model

The model adopted in this poster is the multi-objective comprehensive assessment model for energy consumption, CO₂, and pollutant emission, referred to as MCEE. MCEE is constructed based on the ExSS model, and it contains the following sub-modules or functions.

1.Air pollutant Module:

A module for calculating air pollutants from energy combustion

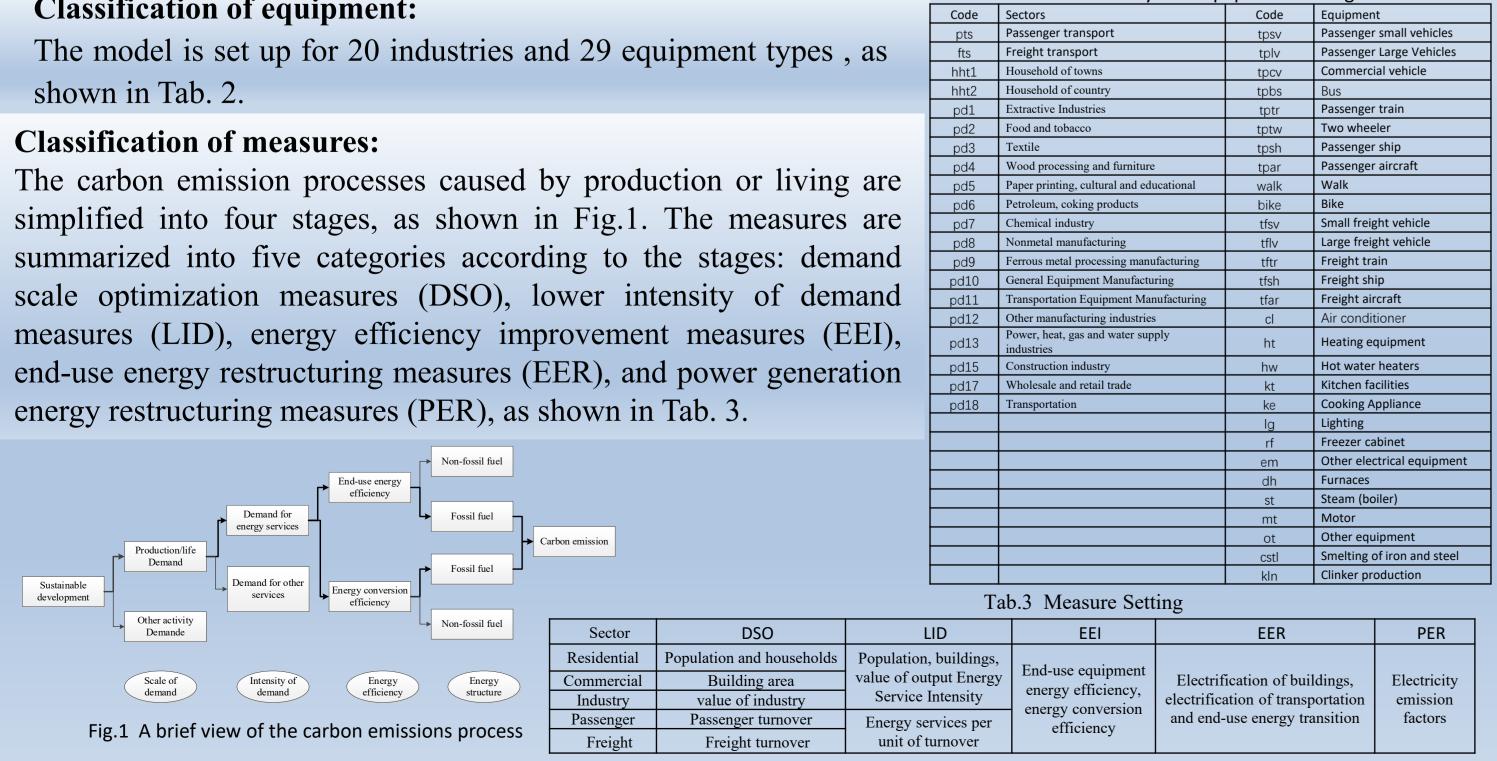

2.Health Impact Module:

Quantifies morbidity and mortality as well as derived medical expenditure, work time loss and premature death **3.Cost Module:**

A module used to estimate the cost of technology upgrading, air pollution treatment and health of the whole society

4.Economy Module:

Estimate the economic impact of changes in costs



5. Measure's contribution assessment function: Assess the energy saving and emission reduction contribution of each measure based on the accounting segment in which it is located

Settings

- All the datasets are converted to the base year of 2015.
- It is assumed that the controlled amount of energy demand and Carbon dioxide intensity per unit GDP in each of the following FYP is the same as the 13th FYP, and the air pollutant emissions decrease by 20%

per five year		rs. Table.1 Scenario Setting						
No.	Scenario	Description	Description					
1	BaU	he baseline scenario. It is based on the trend of 2015 development, does not consider ar cenario, it does not actually exist.						
2	HD(high- quality transition)	The HD scenario includes the following measures: restructuring the energy structure in the increasing the proportion of renewable energy generation, cleaning the purchased por efficiency of equipment, replacing oil with electricity in the transportation sector, electric sector, improving the energy efficiency level of electrical equipment inside buildings structure, reducing the demand for industrial activities, optimizing travel modes, transportation activities and reducing the demand for construction activities.						
Cl	assification	Tab.2 Industry aCodeSectorsptsPassenger transport						

any measures. As a reference

the power generation sector, power, improving the energy lectrification in the industrial gs, optimizing the industrial reducing the demand for

and equipment settings

1. Distribution of Emission Reduction Potential

- From the perspective of sectors, industrial sector has the highest potential for emission reduction in the next ten, with an annual emission reduction of 46.94 Mt, accounting for 40.08% of the total reduction, followed by the transportation sector, with an annual reduction of 42.89 Mt, accounting for 38.32%. There is an obvious growth on the emission reduction potential of the transportation sector and the commercial service sector, while that of the industrial sector and the residential sector is declining. (Tab.4)
- From the perspective of measures, EEI has the largest emission reduction potential in the next ten years, with an annual reduction of 44.34 Mt, accounting for 38.00% of the total reduction, followed by PER. with an emission reduction of 29.84 Mt, accounting for 25.00%. The emission reduction potential of EEI continues to decrease over time, while that of the EER and PER continues to increase. (Tab. 5)

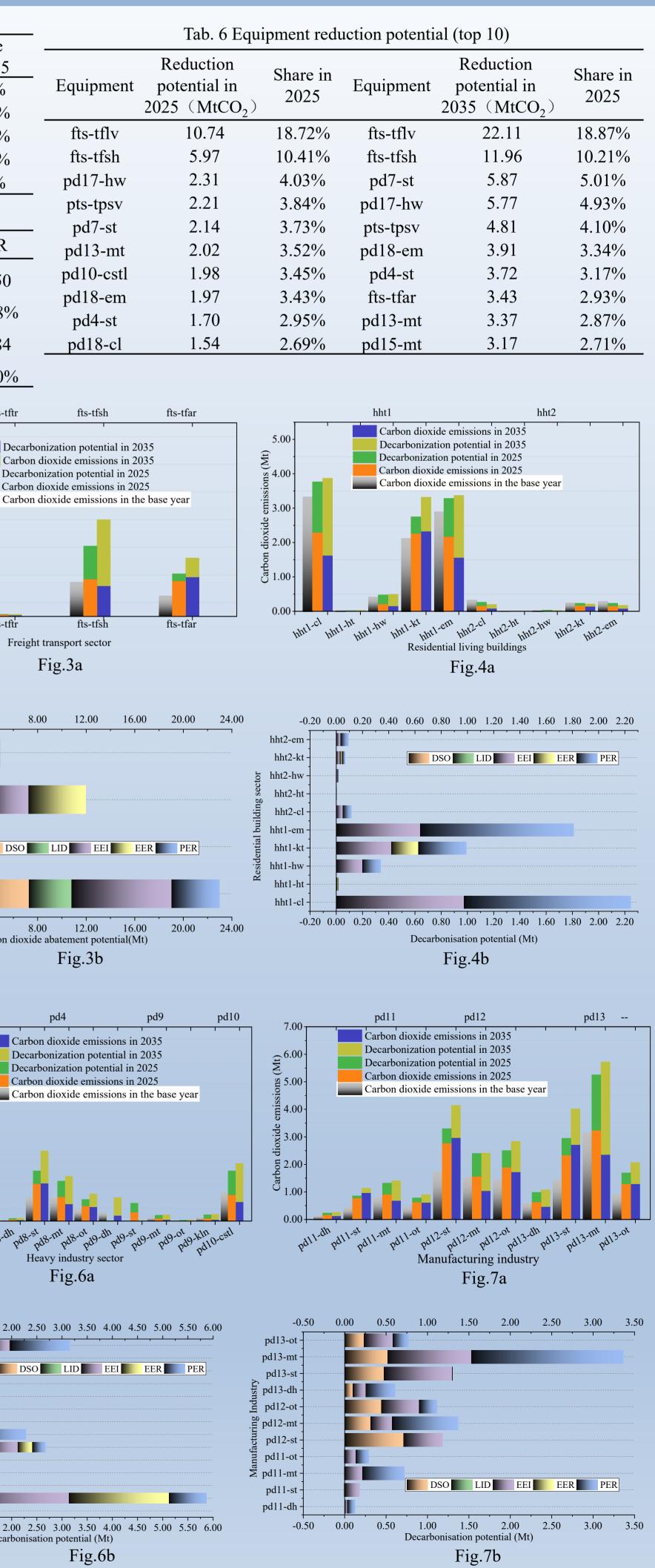
Results

- From the perspective of equipment, freight vehicles, cargo ships, petrochemical boilers, water heating equipment of commercial and service sectors, and passenger vehicles have high potential of emission reduction, occupying the top 5 of the equipment with the largest emission reduction potential. (Tab.6)
- 2. Characteristics of Emission Reduction Potential
- The transportation sector has the largest emission reduction potential and with concentrated emission sources. The largest emission reduction source of passenger transportation is private cars, which accounts for 66.60% of passenger transportation and 4.10% of all. The largest emission reduction source of freight transportation is highway freight transportation, which accounts for 58.69% of freight transportation and 18.87% of all. (Fig.2-Fig.3)
- The industrial sector has a large emission reduction potential, but its emission sources are scattered. The largest emission reduction source of the light industry is boiler equipment in the textile industry, which accounts for 28.65% of the light industry and 3.17% of all. The largest emission reduction source of the heavy industry is boiler equipment in the petrochemical industry, which accounts for 31.62% of the heavy industry and 5.01% of all. The largest emission reduction source of the manufacturing industry is power motors, which accounts for 30.95% of the manufacturing industry and 2.87% of all. (Fig.6-Fig.7) • The building sector has a small emission reduction potential and its emission sources are dispersed. The largest emission reduction source of the residential living sector is air-conditioning equipment, which accounts for 39.41% of the residential living sector and 1.92% of all. The largest emission reduction source of the commercial and service sector is heating equipment, which accounts for 29.45% of the
- commercial and service sector and 4.93% of all. (Fig.4-Fig.5)
- The power generation sector is the largest emission reduction source, accounting for 26.01% of the whole society, and it is key to reduce emission from the electrification of buildings and the electrification of transportation.
- **3.** Conflict of emission reduction measures
- In certain conditions, some of the measures will lead to carbon emission growth, such as excessive growth in the scale of passenger transport demand and poor management of demand intensity (Fig.2b), as well as slow structural transformation of electricity generation with too rapid electrification of freight transport (Fig.3b).

- Production-driven sectors such as industry and freight transportation are the keys for carbon emission reduction, whose emission reduction potentials accounting for 40.08% and 32.16% respectively. Lifedriven sectors such as passenger transportation and residential construction are difficult to reduce carbon emissions, with the reduction potential of 6.16% and 4.84% respectively.
- Energy structure transformation measures will gradually replace energy efficiency improvement measures as the main carbon reduction measures in the future. Non-technological emission reduction measures, such as demand management, will become important growth points in emission reduction potential. Reducing carbon reduction not only requires continuous strengthening technological measures, but also attention to management measures, such as reducing demand for production-driven emission sources through management, reducing demand intensity for life-driven emission sources by advocating low-carbon lifestyles and conservation concept.
- According to the distribution law of emission reduction, priority should be given to various types of equipment in the power generation sector and the transportation sector, which have high emission reduction potential and concentrated emission sources, followed by equipment in the industrial sector, which have high emission reduction potential but dispersed emission sources, and finally equipment in the construction sector, which have low emission reduction potential and dispersed emission sources.
- The main paths for the case city to reduce emission include strengthening the management of sectoral demand scale and intensity, continuously upgrading the energy efficiency of key terminal equipment, transforming the transport mode dominated by road transport in the transportation sector, reducing heavy industry in the industrial sector and supporting advanced manufacturing, accelerating decarbonization in the power, and promoting the electrification of the transportation sector and the electrification of the building sector in an orderly and timely manner.

- China merely proposed framework at the macro level, lacking detailed sectoral and equipment-level countermeasures
- reduction potential of various measures.
- from the sectoral equipment perspective.

	Tab. 4 Sector					~1			
Sector	Reduction potential in $2025 \text{ (MtCO}_2\text{)}$	Share in 2025		tion potentian $5 (MtCO_2)$		Share in 2035			
pts	3.10	5.40%	2031	7.22	,	6.16%			
fts	18.05	31.45%		37.67		32.16%			
ind	23.35	40.68%		46.94		40.08%			
com	9.29	16.18%		19.59		16.74%			
res	3.61	6.30%		5.7	1	4.86%			
	Tab. 5 Measu								
Pedu	action potential in 2025	DSO	LID	EEI	EER	PER			
Keuu	$(MtCO_2)$	12.54	4.05	26.96	1.36	12.50			
	hare in 2025 (%)	21.85%	7.05%	46.96%	2.37%	21.78%			
Redu	iction potential in 2035 $(MtCO_2)$	26.93	7.46	44.34	8.54	29.84			
S	hare in 2035 (%)	23.00%	6.00%	38.00%	7.00%	25.00%			
	pts-tpsv pts-tplv pts-tpcv pts-tpbs	pts-tptr pts-tptw	pts-tpsh pts-tr	par	fts-tflv	fts-tftr			
12.00 11.00				35.00		Deca			
$\hat{\Xi}^{10.00}_{9.00}$	Decarbonization po Carbon dioxide em	issions in 2035		$\Xi^{30.00}$		Carb Deca			
8.00 .00	Decarbonization por Carbon dioxide emi Carbon dioxide em	ssions in 2025	voor	si 25.00-		Carbo			
7.00 <u>e</u> 6.00		issions in the base	year	ep 15.00					
.00 ivoip 4.00				······································					
Carbon dioxide emissions (Mt) 0.06 0.07 0.09 0.09 0.00 0.00 0.00 0.00 0.00				25.00- 20.00- 20.00- 15.00- 10.00- 5.00-					
1.00									
0.00	pts-tpsv pts-tplv pts-tpcv pts-tpbs Passenger tra		pts-tpsh pts-tp		fts-tflv	fts-tftr Frei			
	Fig.2	-							
	-4.00 -3.00 -2.00 -1.00 0.00		ER 00 4.00 5	-	4.00 0.00) 4.00			
pts-tj				fts-tfar	:				
pts-tr				ts-tfsh					
t-stq cor pts-tr pts-tr pts-tr	1			of the state of th					
•	pbs -			transport transfer	: - -	DSO			
bts-tr Basse Dasse Dasse	· · · · · ·			Freight					
ੁੱ pts-tj pts-tj				fts-tflv	7				
1 1	-4.00 -3.00 -2.00 -1.00 0.00		00 4.00 5	.00 -	4.00 0.00) 4.00 Carbon dioz			
Decarbonisation potential (Mt) Carbon dio Fig.2b									
14.00	pd17		pd18	16.0	00	pd7			
£ ^{12.00}	Carbo	n dioxide emission bonization potentia			00-	Car De			
≥ sg 10.00	Decarl	bonization potentia n dioxide emissions	l in 2025	₹ <u></u> 12.0	00-	Dec Car			
00.8 EII:	Carbo	n dioxide emission	is in the base ye	ear is 10.0		Ca			
0.00 ioxide				. s. ioxide	00-				
12.00 00.0 00.0 00.0 00.0 00.0 00.0 00.0				b nd	00-				
ບັ _{2.00}				2.0	00-				
0.00	pdl7-cl pdl7-hw pdl7-kt pdl7-em pdl8-c	pd18-ht pd18-hw	pd18-kt pd18-em	0.0	00	1-mt pd7-ot pd8-dh pd8			
	Commercial and	service buildings	par pare		ba, ba, ba	, pa, pac pa			
	Fig	.5a							
	-1.00 0.00 1.00 2.00	3.00 4.00	5.00 6	5.00 -0	.50 0.00 0.50	1.00 1.50 2.00			
pd18-en				pd10-cstl - pd9-kln -	0.50				
pd18-k		D EEI EER	PER	pd9-ot - pd9-mt -		D			
pd18-h				pd9-st pd9-st - pd9-dh -					
				transformed by the second seco					
pd17-en læ pd17-k									
pd18-k pd18-hv pd18-hv pd18-hv pd18-hv pd18-c pd17-en pd17-k pd17-k pd17-k				m pd7-ot - pd7-mt - pd7-st -					
•	-1.00 0.00 1.00 2.00	3.00 4.00	5.00 6	pd7-dh -	.50 0.00 0.50				
	Decarbonisation p	potential (Mt)				Decarbon			


References: Gomi, K., Shimada, K., Matsuoka, Y., 2010. A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city. Energy Policy 38, 4783-4796. https://doi.org/10.1016/j.enpol.2009.07.026

Introduction

• Action Plan for Carbon Peaking Before 2030, formulated by the Central Committee of the Communist Party of China (CPC) and the State Council, requires regions with stabilized carbon emissions to further reduce their carbon emissions on the basis of taking the lead in achieving carbon peaking. Regarding how to further reduce carbon emissions after reaching the peak, most of leading regions in

To further decompose the sectoral carbon reduction tasks and propose targeted recommendations, it is necessary to identify the main emission sources at the equipment level and to assess the emission

The main tasks of this research are as follows: (1) assess the emission reduction potential of each sector in the case city; (2) identify the main emission sources and the emission reduction potential various measures at the sectoral level; (3) propose a carbon emission reduction pathway after peaking

