The 30th AIM International Workshop (AUG 28, 2024, Tsukuba, Japan)

Integration of Computable General Equilibrium Model with Power Sector Optimization models for Net Zero Scenario Analyses

Yong-Gun Kim, Tae-Yong Jung, Weiyi Jiang Yonsei University GSIS

Micro vs. Macro Impacts

Micro abatement costs and macro system impacts

- \checkmark Impacts on the whole economic system \neq sum of costs to individuals
 - The expense borne by one individual = income gained by another
 - No single indicator for system costs
 - Welfare loss (EV/CV) in theory but real GDP in practice
 - GDI or Household consumption change might be better

Methodologies

- Micro-economic cost for individuals via optimization model (Bottomup) to minimize cost with detailed description of technologies
- ✓ **Economy-wide impacts** via general equilibrium model (Top-down)
- ✓ Integrated Top-down/Bottom-up Models provides both
 - more tractable as the computation capacity improves

Integration of TD-BU models

CGE model + Power sector optimization for Korea

✓ UNICON-K-v1

- Based on the model developed through "Climate Change R&&D" sponsored by MOE/KEITI
- Hybrid SAM combining SAM (Korean IOT) and Power DB (KPX) with a reconciliation procedure
- Linking by decomposition algorithm (Bohringer & Rutherford, 2009)
 - Transform the bottom-up optimization model from cost minimization (LP) to social surplus maximization (QP)
- ✓ Hydrogen and DAC sector with Learning Curve
- New algorithm for improving consistency between TD & BU models and convergence for ETS scenarios
 - Simultaneous reproduction of GDP and power sector forecast

CGE model

Simultaneous Equation system: CNS/MCP/NLP formulations

- Supply-demand balance, zero profit condition, budget constraints (household, government), current account balance, capital stock dynamics equation
- Nested CES (Constant Elasticity of Substitution) for production technologies

$$\mathbf{Output} = \left[\sum_{i} Share_{i} Input_{i}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}, \ \sigma = -\frac{\partial \left(\frac{Input_{i}}{Input_{j}} \right) / \left(\frac{Input_{i}}{Input_{j}} \right)}{\partial \left(\frac{Price_{i}}{Price_{j}} \right) / \left(\frac{Price_{i}}{Price_{j}} \right)} : \text{ constant elasticity of substitution}$$

- > CES, LES, CDE, AIDADS for final demands, Armington model (CET) for exports
- DAC modeling via additional nest on the top
 - ✓ Following Hyman et al. (2002)
- ***** Learning curve: $IC = IC_0 \times \left(\frac{CC}{CC_0}\right)^{-b}$
 - \checkmark CC: Cumulative capacity (CC₀: cumul. Capacity by 2019)
 - $\checkmark \quad LR = 100 \times (1 2^{-b})$
 - ✓ Graham, Hayward and Foster (2024)

CGE Model (Nested CES)

Power sector optimization model

Capacity Expansion Model (LP)

$$\text{Minimize: } \sum_{t=0}^{T} df^{t} \sum_{k} ([INV_{k,v,t} + FOM_{k,v,t}]N_{k,v,t} + \sum_{v,r} [VOM_{k,v,t} + \sum_{f} FC_{f,k,v,t} + \sum_{gas} Tax_{gas} EmiCoef_{gas,k,v,t}]P_{k,v,t,r})$$

k: technology (s: storage technology), v: vintage year, t: period, r: load region, N_{k,y,t}:running capacity, P_{k,v,t,r}:generation, F_k: Self consumption rate, L_k:lifetime, UR_{k,t,r}:capacity factor, INV_{k,t}: investment cost, FOM/VOM: 0&M cost, FC: Fuel cost; df: discount factor, CR_k: Capacity credit, S_{s,t,r}: Stored power, SL_s: Storage loss, I: storage block

- ✤Capacity constraint:
- Demand constraint:
- *Reserve margin: $\forall t, r = \text{peak}$
- Storage constraint:
- ✓ Storage constraint2:
- Emission constraint:

 $P_{k,t,r} \leq UR_{k,t,r} \sum_{\nu=t-L_{k}}^{t} CR_{k}N_{k,\nu}, \forall k,\nu,t,r$ $\sum_{k} (1-F_{k})P_{k,t,r} - \sum_{s} S_{s,t,r} \geq Demand_{t,r}, \forall t,r$ $\sum_{k} CR_{k} \sum_{\nu=t-L_{k}}^{t} N_{k,\nu} \geq Demand_{t,r} + Buffer_{t},$

- $\sum_{r \in l} \sum_{s} P_{s,t,r} \leq \sum_{r \in l} \sum_{s} (1 SL_s) S_{s,t,r}, \forall s, l$ $\sum_{r' \leq r} \sum_{s} P_{s,t,r'} \leq \sum_{r' \leq r} \sum_{s} (1 - SL_s) S_{s,t,r}, \forall s, r$ $\sum_{t \in cp} \sum_{k,r} ECoef_{gas,k,v,t} P_{k,t,r} \leq ECap_{gas,cp}, \forall cp, gas$
- Renewable capacity constraint for piecewise linear cost, RPS, RE100, ...

Decomposition algorithm

TD-BU Linking Algorithm

Transformation of BU model formulation

- Revision of Decomposition Algorithm by Boeringer & Rutherford (2009)
- ✓ BU Objective function : LP => QP

$$\begin{array}{l} & \text{Minimize } \sum_{t=0}^{T} df^{t} \{ \sum_{k} \left([\overline{P_{K}^{t}} INV_{k,v,t} + \overline{P_{L}^{t}} FOM_{k,v,t}] N_{k,v,t} + \\ & \sum_{v,r} \left[\overline{P_{ser}^{t}} VOM_{k,v,t} + \sum_{f} \overline{P_{f}^{t}} FC_{k,v,t} + \\ & \sum_{gas} Tax_{gas} EmiCoef_{gas,k,v,t} \right] P_{k,v,t,r} \right) - \overline{P_{e}^{t}} Q_{e}^{t} \left[1 - \frac{Q_{e}^{t} - 2\overline{Q_{e}^{t}}}{2\epsilon \overline{Q_{e}^{t}}} \right] + \mu^{t} Q_{e}^{t} \} \\ & \quad \overline{P_{e}^{t}} Q_{e}^{t} \left[1 - \frac{Q_{e}^{t} - 2\overline{Q_{e}^{t}}}{2\epsilon \overline{Q_{e}^{t}}} \right] = \int P_{e}^{t} (Q_{e}^{t}) dQ_{e}^{t}, \ Q_{e}^{t} (P_{e}^{t}) = \overline{Q_{e}^{t}} \left[1 - \overline{Q_{e}^{t}} - 1 \right) \right] \end{array}$$

- Calibration of μ^t to reproduce power demand scenario
- ✓ Modified demand constraint

$$\succ \quad \sum_{k} (1 - F_k) P_{k,t,r} - \sum_{s} S_{s,t,r} \ge \left(\frac{Q_e^t}{\sum_{r'} Demand_{t,r'}}\right) Demand_{t,r'}, \ \forall \ t,r$$

Baseline (BAU) Scenario

- Population and real GDP projection for Korea from 2050 LEDS scenario
 - ✓ Annual average population growth rate of 0.1%('17~'40), -0.5%('40~'50)
 - ✓ Average real GDP growth rate of 2.0%('17~'40), 1.0%('40~'50)
 - ✓ Electricity demand grow from 526.9 in 2019 to 1,054.5 TWh in 2050

Calibration of TFP to reproduce real GDP projection

 Electricity demand growth projection has been reproduced with the calibration of BU objective function

Key assumptions for power technology

✤ No more nuclear/coal (after Sinhanwool 3,4)

- ✓ Nuclear capacity factor of 87%, life of 60 yrs
- Cost of solar PV (1MW, 15.4%) and wind power (20MW, on-shore 23%/off-shore 38.5%) from KEEI(2022)
 - ✓ Cost reduction (CAPEX) over 2020~2050 (NREL NTB 2022 'Advanced' scenario)
 - ▶ 65% for PV, 64% for On-whore Wind, 43% for Off-shore Wind
 - ✓ Grid connection cost from OECD & NEA(2012): \$9.65/MWh for on shore wind, \$26/MWh for off shore wind, \$14.57/MWh for solar PV
 - ✓ Piece-wise linear cost function base on technical/economic potential (KECO, 2022)
- ESS (4-hr duration Li ion battery) from Wesley & Frazier (NREL, 2020)
 - 393 \$/kWh in 2019, 156 \$/kWh in 2050, 0&M(2.5%), lifetime of 15 yr, roundtrip efficiency of 85%
- Assumptions for hydrogen gas turbine from AGORA(2020), electrolysis from IRENA(2020)
- CCS cost follows EIA(2021)
 - ✓ CCS for NGCC with 90% capture rate
- Max Capa (GW/yr): Pump hydro 1, Solar PV 20, on shore wind 1, off shore 2

Policy scenarios for carbon pricing

Net Zero Scenario ('NZ')

- ✓ 59.1 MtCO2 of energy-related CO2 emission in 2050
 - Remaining emission corresponding to net sink in AFOLU (21.6) and foreign credit utilization (37.5m)
- ✓ Carbon pricing to meet emissions constraints
 - Carbon tax recycling towards labor tax cut

✤ 4 Variants of NZ Scenario

- \checkmark NZCCS: DAC learning rate from 10% to 15%
- ✓ NZH2: Import price of hydrogen decreased by 50%
- ✓ NZnuc: Additional nuclear by 2.8GW in 2037
- ✓ NZRenLo: Lower cost reduction of PV and Wind
 - From 'Advanced' to 'Conservative' scenario of NREL NTB (2022)
 - CAPEX reduction by 2050: 43% for PV, 38% for On-shore Wind and 24% for Off-shore Wind

Carbon prices and CO2 emissions

- Carbon price (Left panel, Million Korean Won(\)/tCO2) and CO2 emissions for Korea (Right, 1000 tCO2)
 - ✓ 826~996 Thousand ₩/tCO2 of carbon price required for CO2 reduction towards 77.6 MtCO2 in 2049
 - ➤ The lowest carbon price of 826 Thousand \\/tCO2 in NZCCS and the highest of 996 Thousand \\/tCO2 in NZH2

Macro economic impacts

[2019~2049, average % change from BAU] Real GDP, GDI and household consumption impacts of around -2%

✓ With slight gains for labor supply

Macro economic impacts

Trends of Real Household Consumption

Macro economic impacts

Significant growth of hydrogen industry output (2049, % from Ref)

Power generation mix (GWh, 2049)

Renewable energies dominate, supported by storage system

Capacity Mix (GW, 2049)

Dominant role of solar PV

Price Impacts

***** Trends of Electricity Price

Unit commitment model

Mixed Integer Programming (MIP) Model for 2050

- To accommodate start-up/shut-down cost and minimum output ratio with high resolution of time (every 2 hour)
- Minimum duration for operation/shut-down, quick-start/spinning reserve constraints

Greater demands for storage system

- ✓ ESS capacity requirement increases up to 252.7 GW
- Electrolysis capacity (for hydrogen production) requirement also grows to 184.7 TWh
- ✓ Bigger renewables curtail reaching 93.3 TWh
- ✓ Old coal plants find a role for load balancing, supplying 1.9 TWh

Need for combining capacity expansion model and unit commitment model for informed decisions

Hourly generations from MIP

Policy implications

- Steep increase of marginal abatement costs near net-zero target may necessitates flexibility measures such as international market mechanism (IMM)
 - \checkmark Or aggressive utilization of innovative technologies such as DAC
 - A slight allowance for residual emissions could significantly limit the economic impact

Least negative impacts from the Low Hydrogen Price scenario

- Lowest carbon price, minimum loss of real GDI, consumption, exports and imports; Biggest benefit of employment and terms of trade
 - But hardest hit on real GDP
- ✓ Maximized potential of hydrogen turbines
 - With minimal use of ESS and electrolysis
- ✓ Need for proactive investment in foreign suppliers
- Support for GHG-dependent industries for just transition
 - ✓ Compensation of stranded asset, re-education of unemployed

Thank You!

- Acknowledgement:
 - This work was supported by Korea Environment Industry & Technology Institute(KEITI) through "Climate Change R&D Project for New Climate Regime.", funded by Korea Ministry of Environment(MOE) [2022003560012]
- Yong-Gun Kim, Yonsei University GSIS
 - ygkim6007@gmail.com