Utilizing urban IoT sensor data to build more advanced air temperature information using machine learning

Ayano Aida*1, Chan Park*2

*1 Dept. of Urban Planning and Design, University of Seoul *2 Dept. of Landscape Architecture, University of Seoul

Introduction

- Extreme heat is becoming an important issue in cities around the world.
- In order for cities to adapt to extreme heat, they first need information about the hazard.
- To obtain this information, machine learning is one of the methods used to predict and mapping air temperatures in cities
- Urban IoT sensors are being installed around the world to obtain more information.

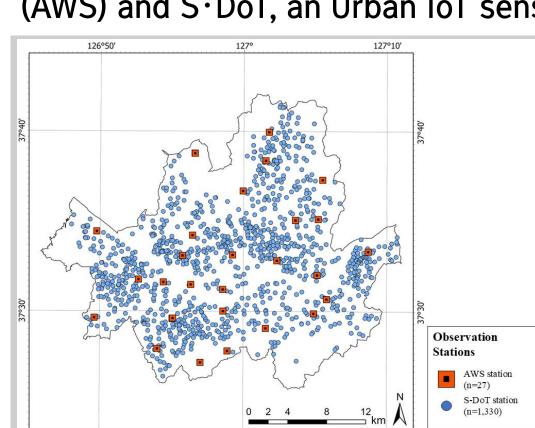
Purpose

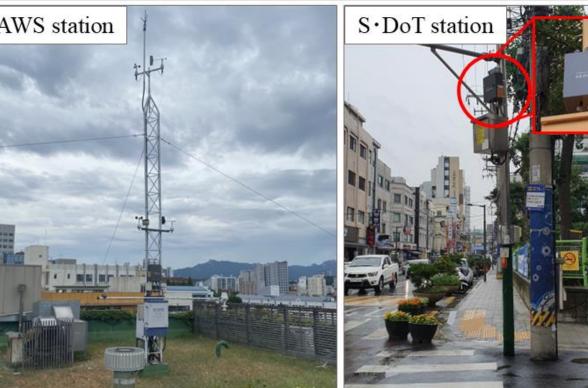
- 1. To understand how much Urban IoT sensors affect performance in a machine learning model for predicting urban temperatures.
- 2. Understand how the potential population exposed to extreme heat varies with the combination of model inputs.

Method

Estimation of the daily maximum air temperature (Tmax) by machine learning algorithm.

Label Data: Two types of station networks were used: the Korea Meteorological Administration's automatic weather observation stations (AWS) and S·DoT, an Urban IoT sensors operated by Seoul Metropolitan Government.





- AWS is an automated weather station operated by the Korea Meteorological Administration (KMA).
- The AWSs are installed according to KMA's strict regulations, and the Ta sensor is placed 1.2 to 2.0 m above the installation surface.

What is S · DoT

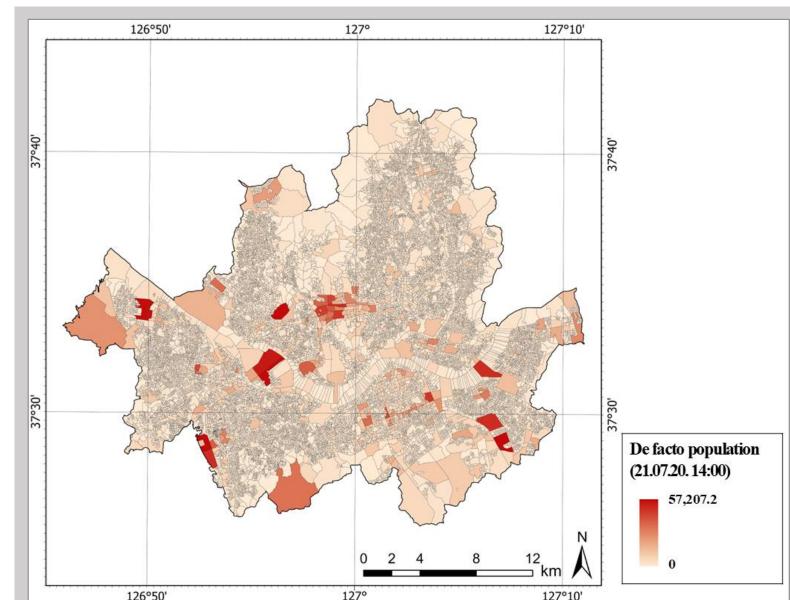
- S·DoT is a ground-based observation system operated by Seoul since April 2020, and it collects ten types of data, including Ta, PM10, PM2.5, humidity, illumination, and noise.
- There are more than 855 stations in Seoul, and most of these stations are installed on CCTV poles at a height of approximately 2-3 m.

Model Setting: Model algorithm — Random Forest, Test size — 20%

Label data	Common predictors	Category	Model name	Additional Predictors	Num. of Samples
AWS			M1	LST, NDVI	13:
	X, Y: XY coordinates DOY: Day of year LC: Land Cover	Including data from Landsat 8	M1_IDW	LST, NDVI, IDW _{S-DoT}	13:
			M1_Near1	LST, NDVI, One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	133
			M1_Near3	LST, NDVI, Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	133
		Including only representative NDVI	M2	NDVIyear	6,570
			M2_IDW	NDVIyear, IDW _{S-DoT}	6,570
	Water: Distance from fresh water	values for that year	M2_Near1	NDVIyear, One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	6,570
	Sea: Distance from fresh sea		M2_Near3	NDVIyear, Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	6,570
	Green: Distance from green space	Without Landsat 8 data	M3		7,758
	DEM : Digital Elevation Model		M3_IDW	IDW _{S-DoT}	7,758
	Slope Aspect		M3_Near1	One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	7,758
			M3_Near3	Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	7,758
S·DoT	LCZ: Local Climate Zone FAR: Floor area ratio	Including data from Landeat 9	M4	LST, NDVI	6,984
		Including data from Landsat 8	M4_IDW	LST, NDVI, IDW _{AWS}	6,984
		Including only representative NDVI	M5	NDVIyear	344,174
	SR: Daily cumulative solar radiation	values for that year	M5_IDW	NDVIyear, IDW _{AWS}	344,174
		Without Landsat 8 data	M6		455,749
		Without Lanusat o uata	M6_IDW	IDW _{AWS}	455,749

2. Estimation extreme heat exposed population by de facto population data

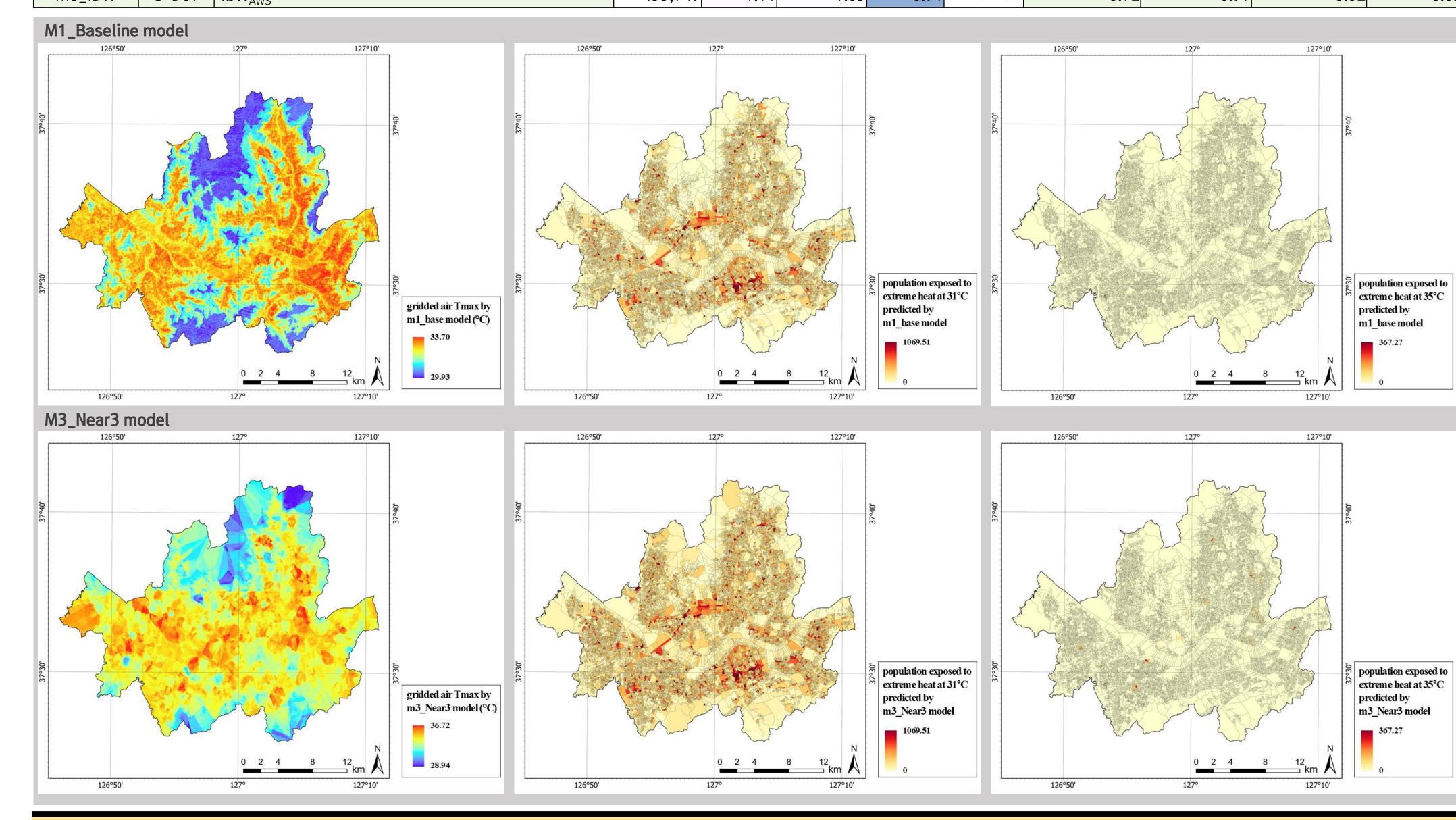
- The potentially exposed populations was considered as the de facto population within the grid with predicted temperatures higher than two benchmarks, 31°C and 35°C.
- The de facto population was estimated based on telecommunication company data for each output area (OA) and hour.
 - For this study, the de facto population data for July 21, 2021 at 14:00, the day with the highest temperature among the days for which all predictors could be obtained, was used.
 - The de facto population of each grid was calculated by allocating it to the developed land cover and artificial green spaces within OA.



Results

 Estimation of the daily maximum air temperature (Tmax) and extreme heat exposed population Model Performance with different predictor combinations

Model name	Label data	Additional Predictors	Num. of Samples	MSE	RMSE	R ²	Rank	At predicted Tmax of 31°C		At predicted Tmax of 35°C	
								Pct. of EP (%)	Pct. of EP aged 70 and over (%)	Pct. of EP (%)	Pct. of EP aged 70 and over (%)
m1_base	AWS	LST, NDVI	133	0.85	0.92	0.83		0.67	0.87	0	0
m1_IDW	AWS	LST, NDVI, IDW _{S-DoT}	133	0.97	0.98	0.80		0.72	0.98	0	0
m1_Near1	AWS	LST, NDVI, One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	133	0.79	0.89	0.84		0.7	0.95	0	0
m1_Near3	AWS	LST, NDVI, Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	133	1.00	1.00	0.80		0.71	0.96	0	0
m2_base	AWS	NDVIyear	6,570	5.06	2.25	0.56		0.48	0.61	0	0
m2_IDW	AWS	NDVIyear, IDW _{S-DoT}	6,570	0.79	0.89	0.93	3 rd – AWS	0.72	0.97	0.01	0.01
m2_Near1	AWS	NDVIyear, One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	6,570	1.06	1.03	0.91		0.69	0.93	0.11	0.16
m2_Near3	AWS	NDVIyear, Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	6,570	0.78	0.88	0.93	2 nd – AWS	0.71	0.96	0.01	0.02
m3_base	AWS		7,758	12.12	3.48	-0.08		0.51	0.68	0	0
m3_IDW	AWS	IDW _{S-DoT}	7,758	0.83	0.91	0.93		0.73	0.98	0.01	0.01
m3_Near1	AWS	One NearT _{S-DoT} , Dist. to One Near _{S-DoT}	7,758	0.88	0.94	0.92		0.7	0.94	0.06	0.08
m3_Near3	AWS	Three NearT _{S-DoT} , Dist. to Three Near _{S-DoT}	7,758	0.56	0.75	0.95	1 st – AWS	0.72	0.96	0.01	0.02
m4_base	S·DoT	LST, NDVI	6,984	1.29	1.14	0.69		0.69	0.93	0.01	0.02
m4_IDW	S·DoT	LST, NDVI, IDW _{AWS}	6,984	1.16	1.08	0.72	3 rd -S·DoT	0.72	0.98	0.01	0.01
m5_base	S·DoT	NDVIyear	344,174	7.50	2.74	0.39		0.58	0.75	0	0
m5_IDW	S·DoT	NDVIyear, IDW _{AWS}	344,174	1.02	1.01	0.92	1 st -S·DoT	0.71	0.96	0.01	0.02
m6_base	S·DoT		455,749	12.93	3.60	-0.01		0.66	0.87	0	0
m6_IDW	S·DoT	IDW _{AWS}	455,749	1.11	1.05	0.91	2^{nd} -S·DoT	0.72	0.97	0.02	0.03



Discussion & Conclusion

- The model performance improved when data from Urban IoT sensors was used as a predictor rather than when LST derived from satellite images was used.
- The population potentially exposed to heat was derived more when IoT sensors were used than when LST was used.
- These results show the usefulness of installing Urban IoT sensors.
- We plan to confirm the performance of each station and the importance of each variable of the label data.

Acknowledgments: This work was supported by a grant from the National Institute of Environmental Research (NIER), funded by the Ministry of Environment (ME) of the Republic of Korea (NIER-2023-04-02-210).