Developing Multi-Scale Decision-Making Support Tools for Urban Climate Resilience

: A Case Example of the Heatwave Assessment Tool.

'25.7.22. The 31th AIM International Workshop

Sanghyuck Kim (SNU, Korea), Huicheul Jung (KEI, Korea), Dongkun Lee (SNU, Korea)

Contents

- 01. Background
- **02.** Technology and Policy Effectiveness Inventory
- **03. Decision Making Support**

Background

The Importance of Climate Resilience

 Climate Resilient Development (CRD) is a central concept in AR6, highlighting the integration of climate adaptation, mitigation, and sustainable development

The Importance of Climate Resilience

The 3rd National Plan for Strengthening Climate Crisis Adaptation (2023-2025)
 emphasizes the significance of climate resilience as a key concept in addressing the climate crisis

 Although climate resilience is emerging as an important concept both domestically and internationally, stakeholders involved in actual policy-making face several limitations:

1. Lack of Information on Effective Technologies and Policies

- What technologies and policies are effective for addressing urban climate risks?
- How do their quantitative impacts compare?
- What are the installation and maintenance costs?

2. Lack of Decision-Support Tools for Spatial Planning

- No scientific and quantitative models for assessing climate resilience at the national or local level
- No micro-scale tools that can be integrated into real-world spatial planning

In this context, this study aims to establish a system that supports the quantitative assessment, management, and planning of urban climate resilience

| Project Objectives

Overall Research Flow

8

Technology and Policy Effectiveness Inventory

Technology and Policy Effectiveness Inventory

	Categorization	
>	Fuction	Minimization of Building Heat Loss, Improvement of Energy
		Efficiency, Carbon Emission Reduction
	Sector	Adaptation(Extreme heat, Heavy rainfall, ···), Mitigation
	Technology	green roofs, green walls, green curtains, thermal
		insulation, shading devices, heat-absorbing materials,
		cooling and irrigation systems, ···
	Policy/Projcet	Regional Support Program for Climate-Vulnerable
		Communities (Ministry of Environment), Residential
		Environment Improvement Program (Ministry of
		Environment, Ministry of Agriculture, Food and Rural
		Affairs), ···
	•	

- Development of a technology categorization system (functional categories, response sectors, technology types, and policies/programs, ...)
- Currently, 52 technologies have been inventoried

Technology and Policy Effectiveness Inventory

- For each technology, users can access real-world application cases and detailed technical information
- The detailed information includes the definition, operating principles, and effectiveness of the technology
- Application cases provide information on actual implementation sites, budget, and other relevant details

Technology and Policy Effectiveness Inventory

- Policies have also been reviewed and categorized through a similar process
- Particular emphasis has been placed on aligning policies with the Sustainable Development Goals (SDGs)
- Each policy is linked to relevant technologies and associated SDGs, allowing for integrated display and retrieval

Practical Applications for Policy Decision-Makers - Inventory

Structuring a Monitoring System

Technology Inventory Access

- By linking climate resilience policies, technologies, effects, and the technology inventory, the platform effectively supports decision-making by central and local governments during project implementation
- Building an Effect Estimation Guideline and linking it to the inventory database enables more accurate evaluation of each project
- Currently, this system is being connected to support programs for climate-vulnerable and disadvantaged regions (since 2021), helping to improve operational efficiency and project effectiveness through administrative integration

Decision Making Support

Macroscale Assessment

- Climate resilience was assessed nationwide at the provincial (si-do) level across the socio-economic, heatwave, and heavy rainfall sectors
- The assessment of climate resilience was based on the 4Rs framework

Robustness: The ability to withstand climate-related disturbances without significant degradation - Proportion of Vulnerable Population, Green Space Ratio

Rapidity: The speed at which a system can recover and restore functionality after a disturbance - Number of Emergency Medical Facilities, Average Distance to Emergency Medical Facilities

Redundancy: The presence of backup systems or alternatives that can take over when primary systems fail - Number of Workers in Related Industries

Resourcefulness: The capacity to mobilize resources and respond effectively during disruptions - Local Budget for Disaster Management and Civil Defense

Practical Applications for Policy Decision-Makers - Macroscale Assessment

Science-Based Climate Resilience Modeling, Future Outlook, and Policy Scenarios & Systems

Ministry of Environment:
National & local climate
adaptation planning

Ministry of Land, Infrastructure and Transport:

Urban master plans, district plans, urban management plans

Scientific Forecast → Policy Target Setting → Policy/Project Design → Implementation & Monitoring → Feedback

(Scientific Forecast)

Climate change and demographic shifts may soon lower climate resilience (e.g., from 30 to below 25)

(Policy Target Setting)

To maintain resilience at 30 in the face of heatwave risk, assume a 20% improvement is required in area A — this becomes a policy target

(Policy/Project Design)

Design intervention plans using climate resilience technologies and the policy inventory (→ Integrated with technology database and tools)

(Monitoring & Implementation)

Track progress toward policy targets in area A using B, C, and D indicators (→ Integrated monitoring system)

(Feedback & Adjustment)

Based on monitoring results, develop new A-2 level strategies to supplement or adjust policy measures

(→ Feedback loop linked with planning tools)

Microscale Assessment - Extreme heat

- A 3D evaluation model was developed to assess technologies for heatwave response
- Outdoor spaces were spatially divided based on existing buildings in the target area, and average temperatures were assessed
- Technologies were applied to three-dimensional locations to simulate changes in temperature.

Microscale Assessment - Extreme heat

- While the 3D model provides high accuracy, it requires a significant amount of time for evaluation
- For use in a decision-support system, it is essential to rapidly evaluate a wide range of technologies and policies
- Therefore, a CNN model was trained to predict near-surface air temperature (at 2 meters) by constructing 100m × 100m training data from the 3D model and integrating it with observed data

Setting threshold - Extreme heat

- Due to rising temperatures caused by climate change, using a fixed threshold poses potential risks.
- Therefore, delta WBGT—defined as the deviation from the average of the past two years—was selected as an indicator to reflect temperature trends.
- The Minimum Mortality Temperature (MMT) was analyzed based on this trend-sensitive indicator and applied as a dynamic threshold
- Changes in climate resilience for each region were assessed by calculating the cumulative risk on days exceeding this threshold during the summer period.

Decision Making Support

Users Who Need "Quantity"

and "Location"

Unit

Local administrative unit

Results

The required **quantity** of each type of green infrastructure needed to ensure climate resilience within a given budget

Example Images

Example of Use

Required number of green roofs

In Seocho-dong, Seocho-gu, 70% more green roofs and 80% more green walls are needed

100m x 100m grid

The **locations** where expansion of green infrastructure is needed, considering both demand and current supply

Where exactly should additional infrastructure be expanded?

al e

grid-level priority locations

Identify priority sites where green roofs and green walls should be installed first

Required number

of green walls

Decision Making Support - Quantity

- The previously described heatwave evaluation methods and indicators, along with the SWIM-based model for heavy rainfall and its assessments of runoff and inundation area, were integrated into a comprehensive framework.
- This framework supports decision-making for the adoption of climate resilience technologies and policies addressing heatwaves and heavy rainfall.
- At the **Local administrative unit**, the model evaluates how effectively selected technologies can be implemented within a given budget and presents the optimal deployment strategy based on cost-effectiveness

Decision Making Support - Location

- Developed 100m-grid models to assess demand and supply of green infrastructure for heatwaves and heavy rainfall
 - Demand: Based on climate risks, spatial characteristics, and vulnerable populations Supply: Evaluated quantity and quality using land cover data
- Based on the identified priority areas, simulations were conducted to determine the optimal installation locations for the designated number of technologies
- The model provides recommendations on where implementation would yield the greatest effect.

Practical Applications for Policy Decision-MakersMicroscale Decision Making

- Risk-based prioritization enables effective planning → Identifying local risks and simulating the effects of measures in advance enables efficient planning
- Decision-making simulators support evidence-based climate adaptation and urban planning

and targeted action

→ Support practical, costeffective adaptation and urban planning by estimating impact and resource needs before implementation

Thank you for your time and attention

