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Background

• Heat illness is becoming increasingly serious in 
Japan due to rising temperatures.
➢ Mortality: often exceeds 1,000 per year—even 2,000 in 

2024—surpassing deaths from natural disasters.

➢ Emergency transport:  tens of thousands per year, 
nearing 100,000 in 2018 and 2024.

• The heat illness risk will be made even worse by 
temperature rise and population aging.
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Annual number of 35°C+ 
days and emergency 
transport cases (2008–
2024)
Source: JMA(1), JMA(2), FDMA 
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• Declines in mobility of elderly population and a 
severe shortage of care workers in Japan, 
underscore the need for fine‐scale mapping of 
heat stress. 

• Still, most existing studies have been conducted 
at the prefectural level. 

Background
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Source: Asahi Shimbun (2024/7/14)

Source: The Japan News (2025/3/19)

Source: Kyodo News (2023/10/7)



To project:

1. Distribution of at-risk elderly populations 
(AREP)* and cumulative exposure

* elderly populations in grids reach the current alert threshold 
(WBGT 33℃) or region-specific thresholds

2. Intervention costs (here, household AC 
installation and electricity subsidies)

Objective
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• We developed a model 
to estimate hourly 
WBGT from daily 
weather data using 
machine-learning.

• Then, applied the 
model to CMIP6-based 
climate projections 
(NIES2020) (Ishizaki, 
2021) to project hourly 
WBGT at high  
resolution (1-km grid).

Method (1): WBGT projection
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Process overview



• For machine learning to construct a prediction 
model, two modeling approaches were 
compared:

1. Extreme gradient boosting (XGBoost) model 
(Chen and Guestrin, 2016)

2. Generalized linear model (with L1:LASSO and 
L2:Ridge regularization)

• Concept (Takakura et al., 2019) :

Method (1): WBGT projection
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𝑊𝐵𝐺𝑇𝑐,𝑑,ℎℎ =  𝑓ℎℎ 𝑥𝑐,𝑑−1 , 𝑥𝑐,𝑑  , 𝑥𝑐,𝑑+1 , 𝑐𝑜𝑠𝜃𝑐,𝑑

✓ xc,d =(Ta,c,d, Ta(max),c,d , Ta(min),c,d , RHc,d , WSc,d , SRc,d) 
where each variable represents city-level daily average / max / min temperature,                       
relative humidity, wind speed, and solar radiation on day d in city c.

✓ cosθc,d=(cosθc,d,0​,...,cosθc,d,23​)
where θd,hh ​ is the solar zenith angle at hour hh on day d. If cosθd,hh<0, it is set to    
zero.



• We estimated the distribution of at-risk elderly 
populations (AREP) by integrating projected 
WBGT and population.
➢ AREP: elderly individuals (age≥65) in grids, which 

reach the current alert threshold (WBGT 33℃), or the 
region-specific thresholds (AHAC) (Oka et al. 2023).

Method (2): Heat illness risk distribution
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Municipality-specific WBGT thresholds for 
elderly individuals (period: 2060–2089; 
scenario: SSP2–4.5; avg of 5 GCMs) 

𝑦 =  0.4514𝑥 + 18.211

y: AHAC threshold for the age group of 65y+
x: avg daily max WBGT from May to Sep

Current alert 
threshold (33℃)



• Costs
➢ Air conditioner (AC) installation for AREP households

w/o AC.                                                                                          
Unit: US$700 per household, 10 years

➢ Electricity subsidy (ES) for AREP households to lower 
financial barriers 

Unit: US$167 per household, year

➢ Cooling shelter (CS) scenario, where the CS houses 
AREP w/o AC, was also considered

➢ A conventional discount rate for Japanese public 
investment (4%) is adopted (Otani et al. 2023).

Method (3): Intervention cost & benefit
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• Benefits (avoidable risk)

➢ Heatstroke deaths
✓ 2.57 × 10⁻⁵ deaths per elderly person (2010–2022 avg)

⇒~969/year in 2030-2059, ~840/year in 2060-2089

✓ Unit: 1.33M USD/person (Fujimi et al., 2023)

➢ Emergency transports
✓ 1.04 × 10⁻³ cases per elderly person (2010–2024 avg)

⇒~39,414/year in 2030-2059, ~34,187/year in 2060-2089

✓ Unit: 890 USD/case (Beniko & Nakai, 2022; Tokyo Gov., 
2004)

➢ Risk reduction assumption
✓ AC-free households: 12.5% reduction (25%* total avoidable risk 

× 50% usage)

✓ AC-equipped households: 37.5% reduction (75%* total 
avoidable risk  ×50% usage), source same as above.
* Based on Tokyo Medical Examiner (n.d.)

✓ Adjusted by AREP share in population

✓ Two discount rates are adopted (4% and 0.1% (Stern, 2006)).

Method (3): Intervention cost & benefit
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Results (1): Accuracy of WBGT Prediction Models
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ML XGBoost Linear regression

All hours R2=0.9８, MAE=0.74（℃） R2=0.9６, MAE=0.95（℃）

By hour R2=0.96～0.99, MAE: 0.55～0.95, 
RMSE: 0.8～1.3, bias: -0.005～
0.002

R2=0.93～0.97, MAE: 0.79～1.21, 
RMSE: 1.1～1.5, bias: 0.001～0.027

⇒ Both models were highly accurate, with MAE 
within ±1°C; XGBoost performed slightly better.

(10M 
test data)

XGBoost Linear



• We trained models using datasets with low Ta

(< 90th PCTL), then tested using datasets with high 
Ta(≧ 90th PCTL).

⇒XGB: Limited accuracy when Ta is high, 

Linear: Relatively stable           〃

⇒For applicability to unlearned conditions in future, 

we adopted the linear model.

Results (1): Stress test for external validity
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XGBoost Linear



• We applied the prediction model to NIES2020 
dataset to project future hourly WBGT.
✓ Global Climate Models (GCMs): MIROC6, MRI-ESM2-0, 

ACCESS-CM2, IPSL-CM6A-LR, MPI-ESM1-2-HR

✓ Emission Scenarios (SSP): SSP1-1.9/1-2.6/2-4.5/5-8.5

✓ Periods: 2030–2059, 2060-2089

• Example:  National mean WBGT in August （GCMs mean）
✓ WBGT notably increased under higher-emission scenarios in 

2060–2089. Peak occurs around 13:00. 

Results (1): Projection of hourly WBGT
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2030-2059 2060-2089

*Error bars represent GCM range (min–max).



• Example: Monthly maximum WBGT at 13 JST in August 
(5GCMs mean)
✓ Higher under higher-emission scenarios, especially in low-

latitude and urban areas.

Results (1): Projection of hourly WBGT
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• Example: Monthly maximum WBGT at 13 JST in August 
(5GCMs mean)
✓ Projected to exceed 35 °C in many areas under SSP5-8.5 

(2060–2089).  

Results (1): Projection of hourly WBGT
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• Mainly concentrated in major urban areas.
➢ Fixed: 10 million (SSP1-1.9) to 31 million (SSP5-8.5)

➢ AHAC: 30 million (SSP1-1.9) to 32 million (SSP5-8.5)

Results (2): AREP distribution (5GCMs mean, 2060–2089)
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• Fixed: SSP1-1.9: 40%+ is limited to metro regions.                      

SSP5-8.5:  〃 expands to broader area but Hokkaido.

• AHAC:     〃 across the country, including Hokkaido.

Results (2): AREP proportion (5GCMs mean, 2060–2089)
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• Fixed: 83 million (SSP1-1.9) to 3.0 billion (SSP5-8.5)

• AHAC: 4.8 billion (SSP1-1.9) to 10.0 billion (SSP5-8.5)

Results (2): Population exposure (5GCMs mean, 2060–2089)
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• If zoomed to Ibaraki Prefecture:

Results (2): Population exposure (5GCMs mean, 2060–2089)
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Tsukuba city

(d)

Total: 9.95e+09



• Fixed: 55 million (SSP1-1.9) to 164 million (SSP5-8.5)

• AHAC: 164 million (SSP1-1.9) to 177 million (SSP5-8.5), 
prominent in Hokkaido, where AC ownership is low (40%)

Results (3): Intervention Cost (5GCMs mean, 2060-2089)
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• Under both thresholds, the costs were offset only under a 
low discount rate (0.1%) for future health impacts. 

• Housing AREP to CS decreased the cost only by 2%.

Results (3): Cost and benefit (5GCMs mean, 2060-2089)
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• Hourly and 1-km grid WBGT projections enable targeted and 
effective interventions for heat-related risks.

• AREP is projected to reach at least 10 million (SSP1-1.9). 
Under SSP5-8.5 or with region-specific thresholds,                               
the number could reach 32 million, over 40% of the pop in 
most municipalities.

• The current uniform threshold (WBGT 33°C) may 
underestimate the magnitude and spatial extent of heatstroke 
risk compared to AHAC. This is particularly critical in cooler 
regions and among vulnerable populations such as the elderly.

• Intervention costs are substantial (55–177 million USD per 
year), yet justifiable under low discount rate, highlighting the 
importance of ethical considerations for future generations. 

Discussion: Key findings and implications
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• Evaluate heat environments in specific activities using high-
resolution WBGT data (e.g., school activities, labor, outdoor 
events)

• Validate the epidemiological relevance of indicators such as 
AREP and cumulative heat exposure

• Incorporate more sustainable cooling strategies, especially for 
elderly care facilities (e.g., rooftop sprinklers, outdoor shading 
devices, electric fans) (Jay et al. 2021)

• Extend the approach to other countries/regions and apply 
alternative thermal indices (e.g., UTCI, SET*)

Discussion: Next steps
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