Emissions scenario analysis for consideration of Japan's reduction target using the AIM model

July 23, 2025 AIM International Workshop

Go HIBINO

Japan's New Reduction Targets

Japan's GHG reduction target

	GHG reduction target (NDC, Plan for Global Warming Countermeasures)	Energy Basic Plan
2015~16	• INDC GHG(vs 2013) 2030FY ▲26% (2050FY ▲80%)	 TFC 2030FY 326 billion <i>l</i> ELE 2030FY RE22~24%, NUC22~20%, Thermal 56%
2021.10	• NDC GHG(vs 2013) 2030FY ▲46% 2050FY CN	 TFC 2030FY 280 billion <i>l</i> ELE 2030FY RE36~38%, NUC20~22%, Thermal 42%
2025.2	 NDC GHG(vs 2013) 2030FY ▲46% 2035FY ▲60% 2040FY ▲73% 2050FY Net Zero 	 TFC 2040FY 260~270 billion l ELE 2040FY RE40~50%, NUC20%, Thermal 30~40%

2

Process for determining new target

----- 2025.2 Cabinet decisions

Plan for Global Warming Countermeasures NDC (Nationally Determined Contributions)

Energy Basic Plan

Joint meeting of the subcommittee of the Central Environment Council and the subcommittee of the Industrial Structure Council (2024.6~2024.12)

Model analysis by NIES, RITE (2024.12)

GHG emission pathways from 2030 to 2050 (≂ GHG reduction rate by 2035 and 2040)

Basic Policy Subcommittee of the Advisory Committee for Natural Resources and Energy (2024.5~2024.12)

Model analysis by NIES, RITE, IGES, Deloitte, IEEJ, McKinsey (2024.12 / 2025.1)

Energy mix in 2040 and 2050

Modelling studies of early / late deployment of low carbon measures

Scenario

Technology Progress Scenario I : without innovative technologies

Scenario I-a : late deployment of innovative low carbon technologies

Innovative Technology ... Scenario II : moderately timed deployment of innovative technologies

Social Transformation

Scenario III : Scenario II + Social transformation

Scenario III : Scenario III + Social transformation

Scenario III-a: early deployment of innovative low carbon technologies

		Technology Progress Scenario		Innovative Technology Scenario	chnology Social Transformation Scenario		
			l-a	=	≡	III-a	
Overview			Innovative Tech. <mark>Late</mark> deployment	RE - low CCUS - low	RE - low CCUS - low	Innovative Tech. Early deployment	
Innovative T	echnology	_	Δ	0			
Social transformation		_	_	- 0			
Electrification		BaU	Acceleration after 2040	Acceleration after 2030			
Efficient energy		Low	High <mark>after 2040</mark>	High			
RE max	PV	160 / 209 GW	160 / 209 GW	160 / 209 GW	160 / 209 GW	185/209 GW	
KE IIIAX	Offshore wind	15 / 45 GW	15 / 45 GW	15 / 45 GW	15 / 45 GW	15 / 45 GW	
H2, NH3, Synfuel	vs total fuel demand	0%/0%	<mark>0%</mark> /100%	25%/100%	25%/100%	25%/100%	
	self-sufficiency	_	≒10%	≒10%	≒10%	≒10%	
Nuclear		140 TWh					
GHG Emission in 2050		≒ ▲70%	GHG net zero				
GHG Emission pathway			Convexity above	Linear	Linear	convexity below	
Carbon price (1,000 JPY/tCO ₂)		0	10 / 40	10 / 40	10 / 40	20 / 40	
CO ₂ storage (Max)(MtCO ₂)		0	<mark>6</mark> / 120	27 / 120	27 / 120	<mark>82</mark> / 120	

Deployment of low carbon technologies

► PV installed capacity

	Stock Capacity (GW)				Installed capacity during the period (Equivalent to the number of house) (1,000/10yrs)		
	2022	2030	2040	2050	'31-'40	'41-'50	
I-a (Late)	71	71 111	160	209	9,800	9,800	
III			160	209	9,800	9,800	
III-a (Early)			<mark>184</mark>	209	14,800	5,000	

Number of detached houses in Japan = 29,329 (1,000) in 2023

► Hydrogen-based fuel

	Increase of demand (Mtoe/10yrs)		Increase of demand (vs present natural gas demand(=100))		
	'31-'40	'41-'50	'31-'40	'41-'50	
I-a (Late)	<u>0</u>	<mark>109</mark>	<u>0</u>	<mark>116</mark>	
III	7	71	6	76	
III-a (Early)	21	56	22	60	

Cost of energy device

Modelling studies of energy mix

Scenario

Technology Progress ··· Scenario I

Social Transformation

Scenario III : Hydrogen's share is larger than other scenarios

Scenario III-b: CCUS's share is larger than other scenarios

Scenario III-c: Renewable's share is larger than other scenarios

		Technology Progress Scenario	Social Transformation Scenario			
		Scenario I	Scenario III	Scenario III-b	Scenario III-c	
Overview			RE - low CCUS - low	RE - low CCUS - high	RE - high CCUS - low	
Innovative Technology			0			
Social transformation		_	0			
Electrification		BaU	Acceleration after 2030			
Efficient energy		Low	High			
RE max	PV	160 / 209 GW	160 / 209 GW	160/209 GW	201/384 GW	
	Offshore wind	15 / 45 GW	15 / 45 GW	15 / 45 GW	45 / 179 GW	
H2, NH3, Synfuel	vs total fuel demand	0%/0%	25%/100%	25%/100%	25%/100%	
	self-sufficiency	_	≒10%	≒10%	≒30%	
Nuclear		140 TWh				
GHG Emission in 2050		≒ ▲70%	GHG net zero			
GHG Emission pathway			Linear			
Carbon price (thousand JPY/tCO ₂)		0	10 / 40	10 / 40	10 / 40	
CO ₂ storage (Max)(MtCO ₂)		0	27 / 120	27 / 200	27 / 120	

Final energy consumption

 Improving energy consumption efficiency, shifting from fuel to electricity use, and switching from fossil fuels to hydrogen-based fuels are essential to achieve net zero emission.

Electricity demand

- Electricity demand in final consumption sector has remained roughly stable.
- Electricity demand for the domestic production of hydrogen-based fuels increase in future.

Electricity Generation

- Renewable energy increases steadily, and coal-fired plants are phased out by 2040. The difference between scenarios is not significant by 2040.
- After 2040, along with further increases in renewable energy, the introduction of CCUS-equipped power plants and hydrogen or ammonia power plants also increase.

Cost

• Differences arise between scenarios from 2041 onwards, but these differences cannot be said to be significant given the uncertainty in technology costs.

Direction of measures to achieve net zero

Energy saving and electrification

Rapid deployment is difficult within just a few years due to the timing of equipment renewal and replacement cycles. Therefore, steady and continuous efforts must begin immediately.

Power generation

Achieve 100% decarbonized power generation by 2050 to reach net-zero emissions. After 2040, further expand renewable power generation and promote large-scale deployment of thermal power with CCUS and power generation using new fuels.

Amount of investment

The future cost of innovative technologies over a 20-year horizon is highly uncertain. Therefore, it is important to prepare for a wide range of options and update assumptions regularly.

