AIM Workshop 2025 in Tsukuba, on 22-23 July 2025 Session7: Global Mitigation Analyses: focusing on & collaboration with Asia

Scenario MIP activities and (preliminary) results

Osamu Nishiura, Tomoko Hasegawa, Shinichiro Fujimori, Ken Oshiro, Tatsuya Hanaoka, Kiyoshi Takahashi, Shotaro Mori, Koga Yamazaki and many others from IAM teams

Coupled Model Intercomparison Project (CMIP)

What is CMIP?

- CMIP is a project of the World Climate Research Programme (WCRP).
- CMIP develops experimental protocols to run Earth System Models (ESMs) and compare the simulation output.
- Comparing simulations helps to evaluate and improve models and provide a better understanding of past, present and future climates.

CMIP History

- In 1995, the WCRP Working Group on Coupled Modeling (WGCM) established CMIP.
- The number of participating models has significantly expanded since CMIP3 in 2005, with 136 models participating in CMIP6 in 2016.
- CMIP and its associated data infrastructure have become essential to the IPCC report and other climate assessments.
- CMIP7, the latest phase of CMIP, is under preparation.

Ref. CMIP Overview - Coupled Model Intercomparison Project (https://wcrp-cmip.org/cmip-overview/#)

The Scenario Model Intercomparison Project (Scenario MIP)

- ScenarioMIP provides alternative futures of emissions and land use by which ESM simulations are driven.
- ScenarioMIP experiments integrate the climate science, integrated assessment modeling (IAM), and impacts, adaptation, and vulnerability (IAV) communities.
- In CMIP7, ScenarioMIP proposed a new set of scenarios, which covers a wide and plausible range.

Scenario narrative – Temperature pathways

- Socio-economic assumptions are based on SSPs. (H:SSP3 or 5, M, ML, L, and VLHO:SSP2, VLHO:SSP1 or 2)
- In CMIP7, Seven IAMs quantified those scenarios, and one marker scenario will be selected for each scenario based on marker criteria.

Carbon dioxide removal (CDR)

- There are several type of CDR, each with different socio-economic and land use impacts.
- The policy intensity and future socioeconomic conditions will determine the type and amount of CDR which is one of the key elements of policy analysis and climate simulations.

Scenario narrative – Marker criteria for CDR and Sustainability

- The narrative for Scenario MIP includes a description of CDR implementation and sustainability indicators related to CDR.
- Bellow table shows marker criteria for CDR and used for the scenario vetting and marker selection.

Criteria	Only VLLO	Only VLHO	All
CDR total volume (i)VLLO <vlho, (ii)vllo<="L</td"><td></td><td></td><td>X</td></vlho,>			X
VLHO needs to be sufficiently different from other scenarios, in terms of CDR		X	
Rapid deployment of land-based CDR in VLLO within sustainability limits	X		
Keeping geological storage within modest technological limits (around 11200Gt in cumulative)			Χ
Keeping geological storage within strong sustainability limits in VLLO (around 5.0Gt/year)	X		
Near-term plausibility of CCS (4.3Gt/year in 2040 and 7.0Gt/year in 2050)			Χ
Sustainability of biomass and BECCS use (biomass ~ 100-150 EJ) in VLLO	X		
Biodiversity implications through BII or other biodiversity indicator / Natural land area			Χ
Rapid convergence of efforts in VLLO (Carbon price)	X		

(Preliminary) Results associated with CDR

Emissions and removals

- ●In VLHO, gross CO2 emission in 2100 is 9.8 Gt/yr, almost the same level as L and VLLO, but gross removal is 33.5 Gt, significantly higher than VLLO due to delayed action.
- VLLO has low carbon removals in the second half of the century due to rapid reductions in GHG emissions.

- •In VLLO, CDR demand was suppressed by early emission reductions and demand-side action, and the relatively inexpensive afforestation and BECCS met the demand for CDR.
- •In VLHO, DACCS and BECCS became the primary means of carbon removal because of their large potential and few biophysical limitations in scale-up.

Geological Storage

- Geological storage is a key constraint of BECCS and DACCS.
- ●In VLHO, huge amount of storage was used, and the remaining storage was about 400 years for the demand in 2100.

Year

5 084

Sce_Emi

VLHO VLLO

Land use

- •In VLHO, crop land increased due to demand for biomass and food, while forest and other natural area decreased instead.
- •In VLLO, non-energy crop and pastureland decreased due to reduced livestock demand, and forest and other natural area increased by 139 million ha.

Future tasks

ScenarioMIP workshop report, WCRP, 2023

- > To submit final version of scenarios
- > To check the variables related to the CDRs and sustainability
- > To write a crosscut paper of the CDRs and sustainability

Thank you

Osamu Nishiura E-mail: nishiura.osamu@nies.go.jp