Introduction of **AIM/Energy Snapshot Tool** (ESS)

Ms. Maho Miyashita (Takimi) Mizuho Information & Research Institute Prof. P.R. Shukla Dr. Mikiko Kainuma

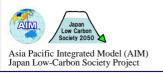
Indian Institute of Management National Institute for Environmental Studies

Contents

Contents

Back Ground

Structures	&	Flows
Structures /	ΧŢ.	FIOW
Suuciaico	SC.	I IU VV L


Operation

En	duse	Secto	1

Transformation Sector

Analysis

- Background
- Structures & Flows
- Operation
 - Demand Settings (Residential Sector)
 - Transformation Sector (Electricity, Other)
 - Analysis

Contents
Back Ground
Structures & Flows
Operation
Enduse Sector
Transformation Sector
Analysis
Japan Low Carbon Society 2050
Asia Pacific Integrated Model (AIM) apan Low-Carbon Society Project

Contents

Back Ground

Operation

Enduse Sector

Transformation Sector

Analysis

Background of development

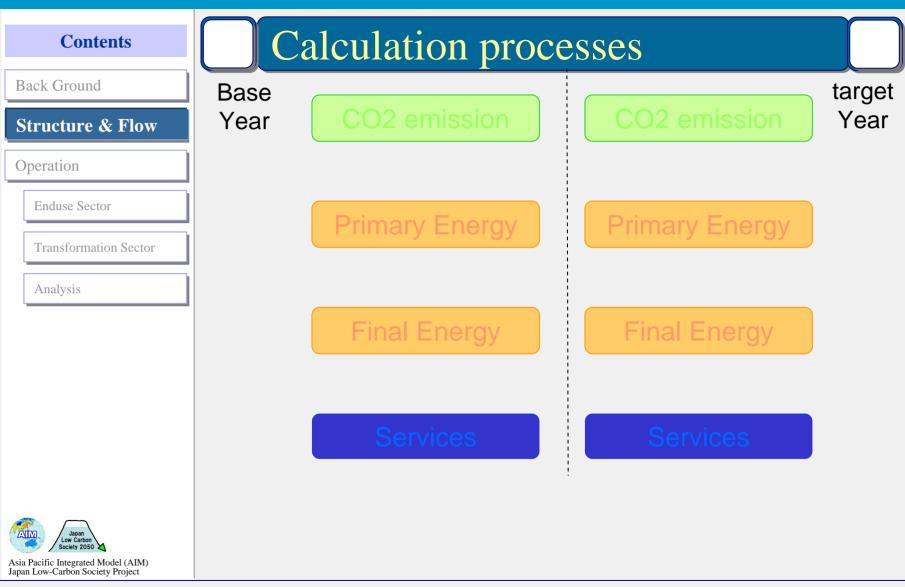
- In scenario developing processes, a tool with following feature would be useful
 - Clear assumptions & calculation processes
 - Easy interpretation of the results
 - Easy sensitivity analysis
 - Keep energy balance
- Tools for describe future energy balance table in a spreadsheet: Energy Snapshot Tool (ESS)

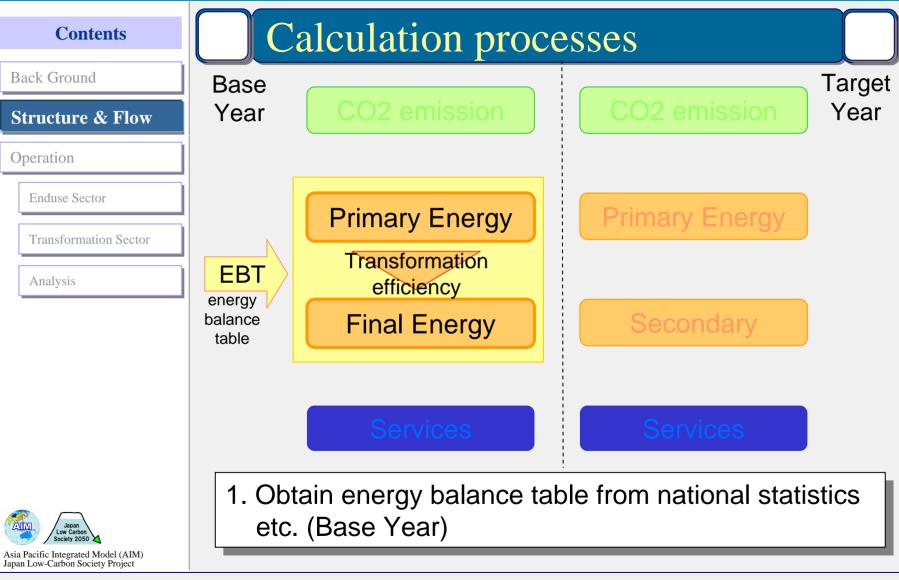
Contents

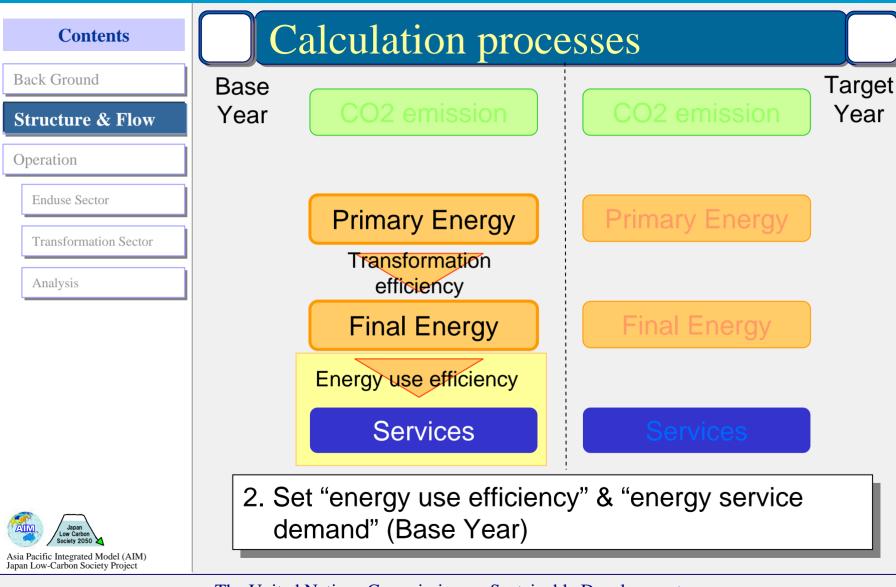
Back Ground

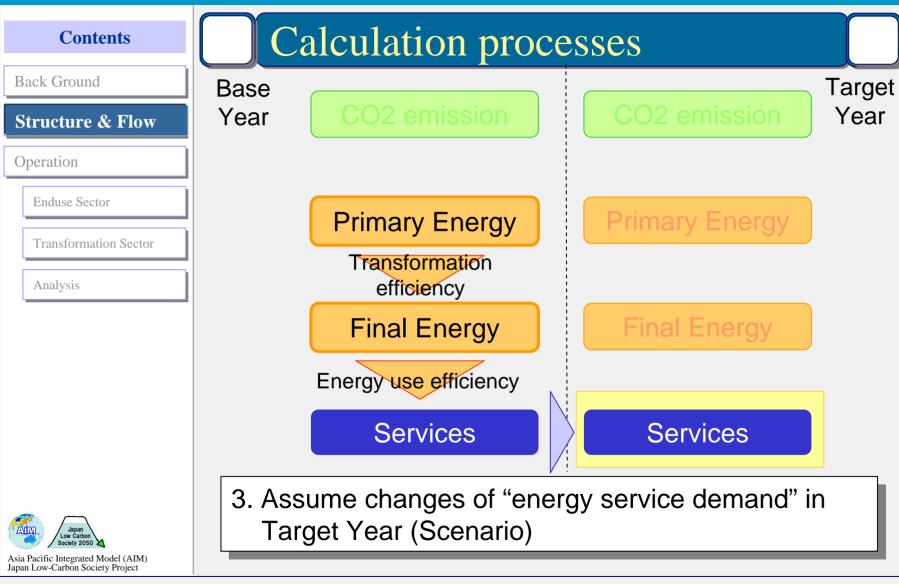
Structures &	Flows
--------------	-------

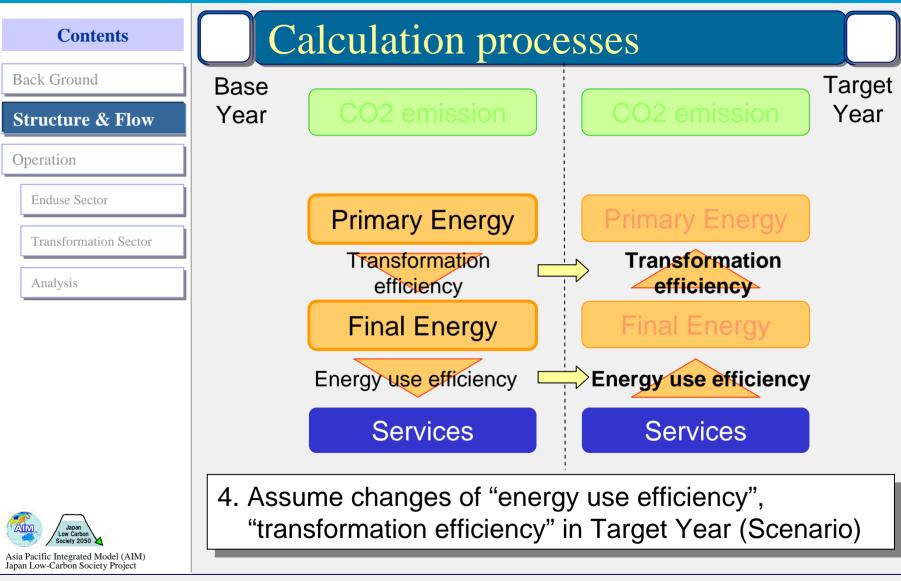
Operation

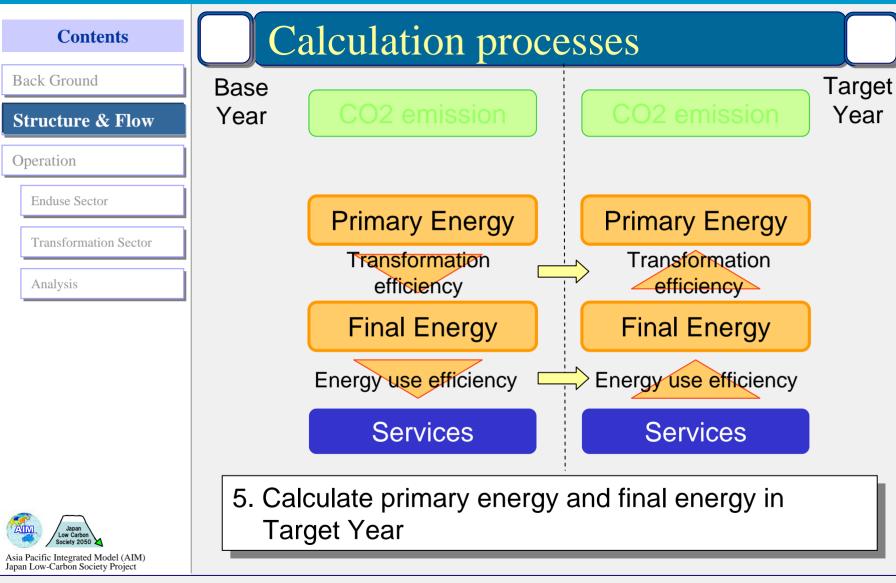

Enduse Sector

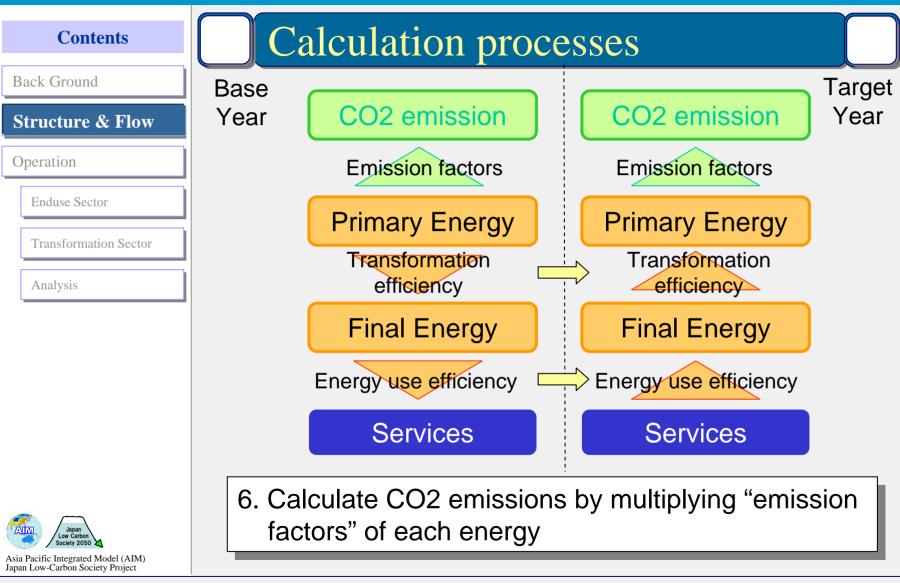

Transformation Sector

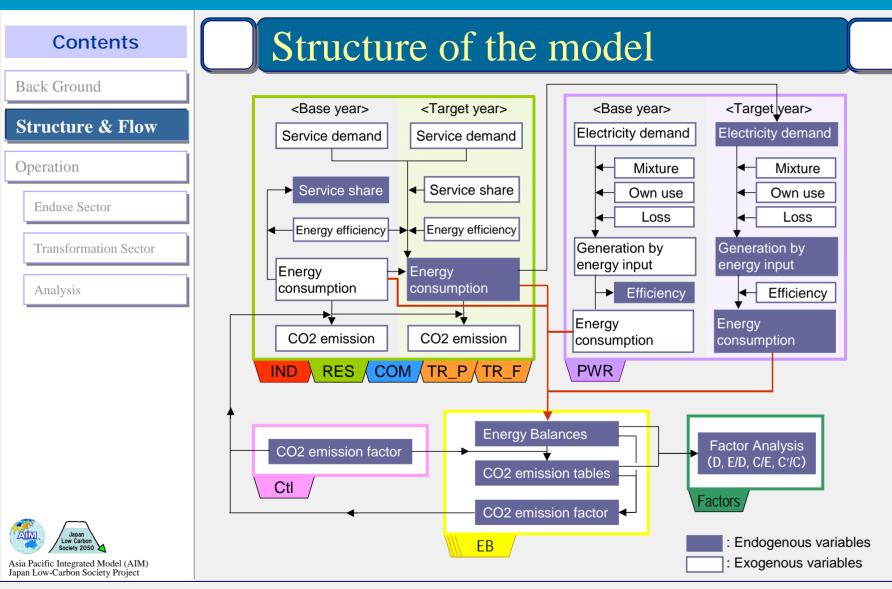

Analysis

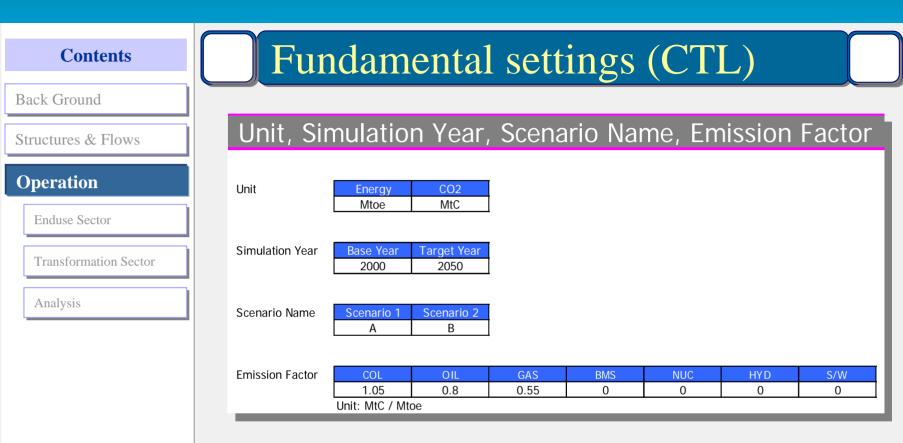

- Excel format
- Based on energy balance table
- Step by step approach
- The tool can be used for;
 - Developing and designing future scenarios
 - "What if" analysis
 - Check the consistency among the sectors
 - Analyze the impacts of countermeasures
 - Communication among stakeholders


Contents		
Back Ground		
Structure & Flow		
Operation		
Enduse Sector		
Transformation Sector		
Analysis	Structure & Flow	
Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project		









Contents		
Back Ground		
Structures & Flows		
Operation		
Enduse Sector		
Transformation Sector		
Analysis	Operation	
Japan Low Carbon Society 2050		
Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project		

Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project

General rules

- White cells: User input
- Colored cells: Automatically calculated values

Contents
Back Ground
Structures & Flows
Operation
Enduse Sector
Transformation Sector
Analysis
Japan Low Carbon Society 2050 Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project

Contents

Back Ground

Structures & Flows

Operation


Enduse Sector

Transformation Sector

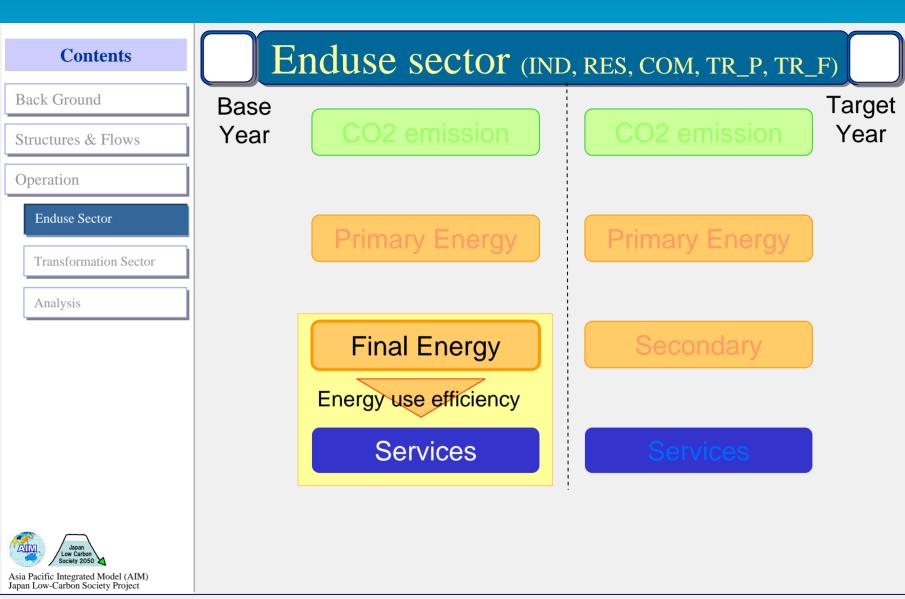
Analysis

Enduse sector (IND, RES, COM, TR_P, TR_F)

Residential sector

1 Energy service demand

					20	50			
	Unit	2000	RI	EF	C	М	CM/REF		
			A	В	А	В	А	В	
Cool	Mtoe	4	4	4	4	4	90%	100%	
Warm	Mtoe	81	81	81	65	81	80%	100%	
Hot Water	Mtoe	55	55	55	55	55	100%	100%	
Cooking	Mtoe	60	60	60	30	60	50%	100%	
Others	Mtoe	5	5	5	5	5	100%	100%	
	Mtoe				0	0			
	Mtoe				0	0			
	Mtoe				0	0			
	Mtoe				0	0			
					0	0			
					0	0			


4-6 Energy consumption / CO2 Emission

		Unit	COL	OIL	GAS	BMS	S/W
4 Energy	2000		45	13	5	213	0
Consumption	2050 A (CM)	Mtoe	53	12	38	86	0
	2050 B (CM)		45	13	5	214	0
5 Emission	2000		1.05	0.80	0.55	0.00	0.00
Factor	2050 A (CM)	MtC/Mtoe	1.05	0.80	0.55	0.00	0.00
	2050 B (CM)		1.05	0.80	0.55	0.00	0.00
6 CO2 Emission	2000		47	10	3	0	0
	2050 A (CM)	MtC	56	10	21	0	0
	2050 B (CM)		47	10	3	0	0

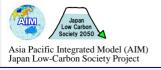
REF = Reference case CM = Countermeasure case

2 Service Share

	Unit					2000					2050 A (CM)							2050 B (C						
	Unit	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W
Cool	-	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0	0	0%	0%
Varm	-	23%	8%	2%	48%	0%	3%	0%	16%	100%	61%	8%	2%	10%	0%	3%	0%	16%	100%	23%	8%	2%	48%	09
lot Water	-	14%	4%	1%	71%	0%	5%	0%	4%	100%	0%	6%	50%	30%	0%	10%	0%	4%	100%	14%	4%	1%	71%	0
Cooking	-	7%	0%	1%	92%	0%	0%	0%	0%	100%	7%	0%	1%	92%	0%	0%	0%	0%	100%	7%	0%	1%	92%	0
Others	-	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0%	0%	0%	100%	100%	0%	0%	0%	0%	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0%	0
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0	0	0	

Contents

Back Grou	und
-----------	-----


Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis

0. Classification of service demand

- Set classification of energy service demand & its unit in residential sector
- Scenario name, base year and target year set in CTL sheet will shown in each table

			2050								
	Unit	2000	RE	EF	C	M	CM/REF				
			Α	В	Α	В	А	В			
Cool	Mtoe	12	12	12	12	12	100%	100%			
Warm	Mtoe	72	72	72	72	72	100%	100%			
Hot Water	Mtoe	34	34	34	34	34	100%	100%			
Cooking	Mtoe	2	2	2	2	2	100%	100%			
Others	Mtoe	11	11	11	11	11	100%	100%			
					0	0					
					0	0					
					0	0					
					0	0					
					0	0					
					0	0					

Contents

Back Grou	nd
-----------	----

Structures & Flows

Operation

Enduse Sector

Analysis

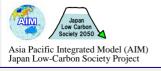
1. Energy Cons. in base year

- Past record of energy use in residential sector
- If the appropriate data is not available, use data of EBT (one sector), or make a guess!!

						2000				
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0
Warm	Mtoe	30.0	10.0	3.0	50.0	0.0	3.0	0.0	5.0	101.0
Hot Water	Mtoe	10.0	3.0	1.0	50.0	0.0	3.0	0.0	2.0	69.0
Cooking	Mtoe	5.0	0.0	1.0	113.0	0.0	0.0	0.0	0.0	119.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	45	13	5	213	0	6	0	14	296

Contents

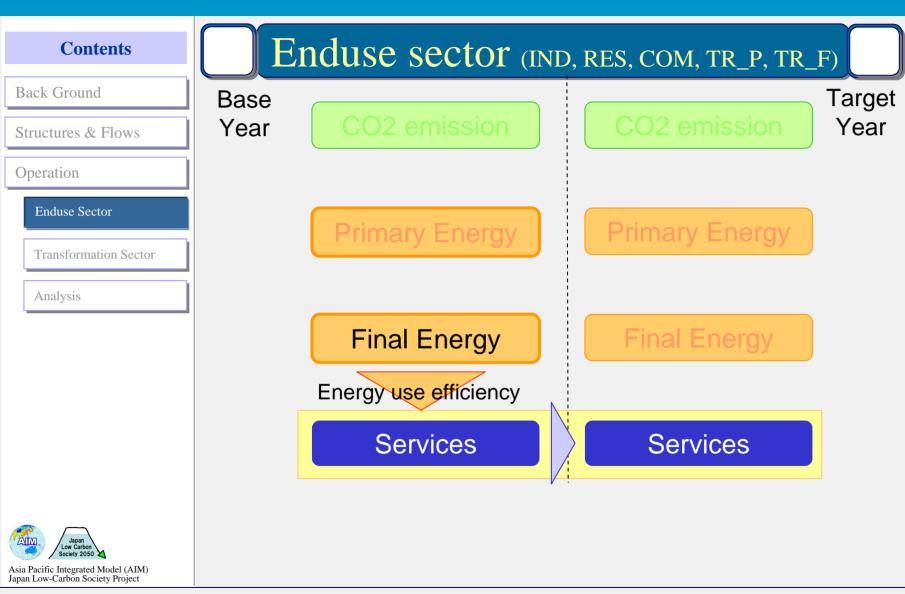
Back Ground


Structures & Flows

Operation

Enduse Sector

Transformation Sector


Analysis

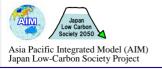
2. Energy use eff. in base year

- Set energy efficiency of each energy use
 - Energy use efficiency: Ratio between the consumption of energy to service demand
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

	Unit					2000				
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	toe/toe								2.00	-
Warm	toe/toe	0.70	0.70	0.70	0.90		1.00		3.00	-
Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
Others	toe/toe								1.00	-
	toe/toe									-
	toe/toe									-
	toe/toe									-
	toe/toe									-
										-
										-

Contents

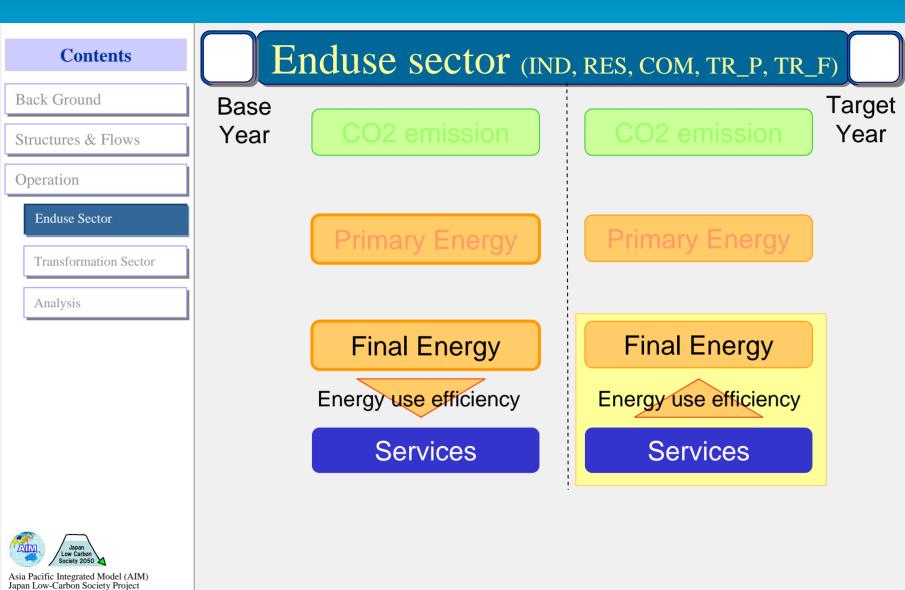
Back Ground


Structures & Flows

Operation

Enduse Sector

Transformation Sector


Analysis

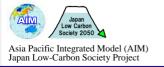
3. Service Demand

- Service demand in base year
 - Service demand (Mtoe) = Final Energy/EE
- Assume service demand in target year
- Reference case, Countermeasure case

			2050								
	Unit	2000	RE	F	C	M	CM/	REF			
			Α	В	А	В	Α	В			
Cool	Mtoe	4	4	4	4	4	90%	100%			
Warm	Mtoe	81	81	81	65	81	80%	100%			
Hot Water	Mtoe	55	55	55	55	55	100%	100%			
Cooking	Mtoe	60	60	60	30	60	50%	100%			
Others	Mtoe	5	5	5	5	5	100%	100%			
	Mtoe				0	0					
	Mtoe				0	0					
	Mtoe				0	0					
	Mtoe				0	0					
					0	0					
					0	0					

Contents

Back Ground


Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis

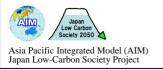
4. Service share in target year

- Set service share to fulfill the service demand
 - Assume the technology used
 - Check "total value" (=100%)

	Unit				205	50 A (C	CM)			
	Unit	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
Warm	-	61%	8%	2%	10%	0%	3%	0%	16%	100%
Hot Water	-	0%	6%	50%	30%	0%	10%	0%	4%	100%
Cooking	-	7%	0%	1%	92%	0%	0%	0%	0%	100%
Others	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%

Contents

Back Ground


Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis

5. Energy use eff. in target year

- Set energy efficiency of each energy use in Target Year
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

	Unit				20	50 A ((CM)			
	Unit	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	toe/toe								2.00	-
Warm	toe/toe	0.90	0.70	0.70	0.90		1.00		3.00	-
Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
Others	toe/toe								1.00	-
	toe/toe									-
	toe/toe									-
	toe/toe									-
	toe/toe									-
										-
										-

Contents

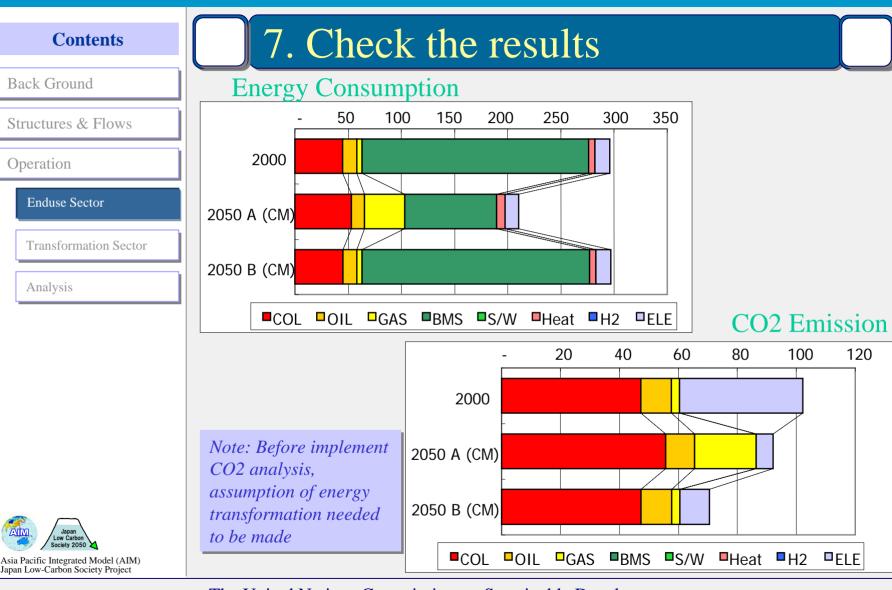
Back Ground

Structures & Flows

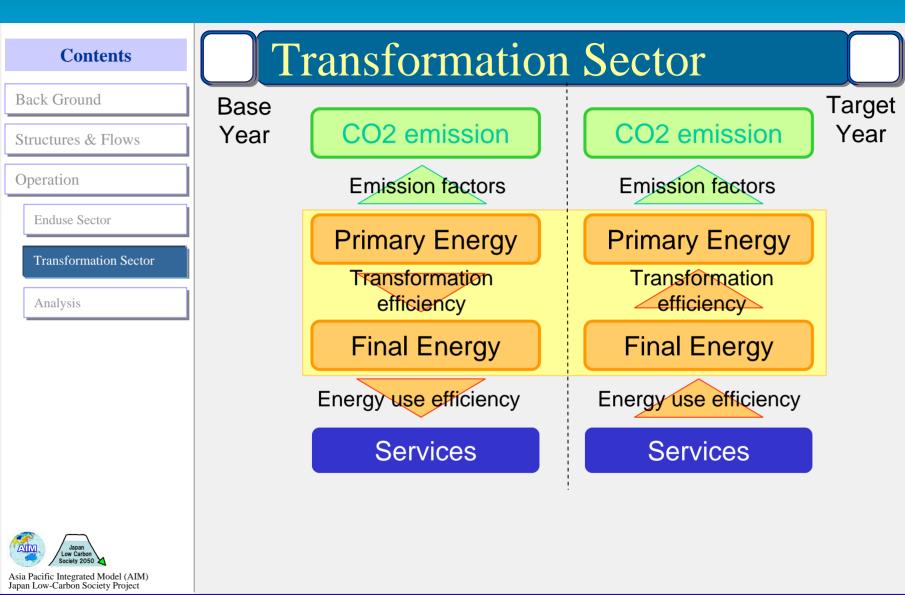
Operation

Enduse Sector

Transformation Sector


Analysis

6. Energy Cons. in Target year


- Calculated automatically
- Additional Input
 - Generation: PV etc.
 - CHP: Fuel cells, Gas engine etc.

					205	50 A (C	CM)			
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.8
Warm	Mtoe	50.6	8.0	2.4	8.3	0.0	2.4	0.0	4.0	75.7
Hot Water	Mtoe	0.0	4.2	35.0	21.0	0.0	5.6	0.0	2.0	67.8
Cooking	Mtoe	2.5	0.0	0.5	57.0	0.0	0.0	0.0	0.0	60.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	53	12	38	86	0	8	0	13	210

Contents	
Back Ground	
Structures & Flows	
Operation	
Enduse Sector	
Transformation Sector	
Analysis	Transformation Sector

Contents

Back Ground

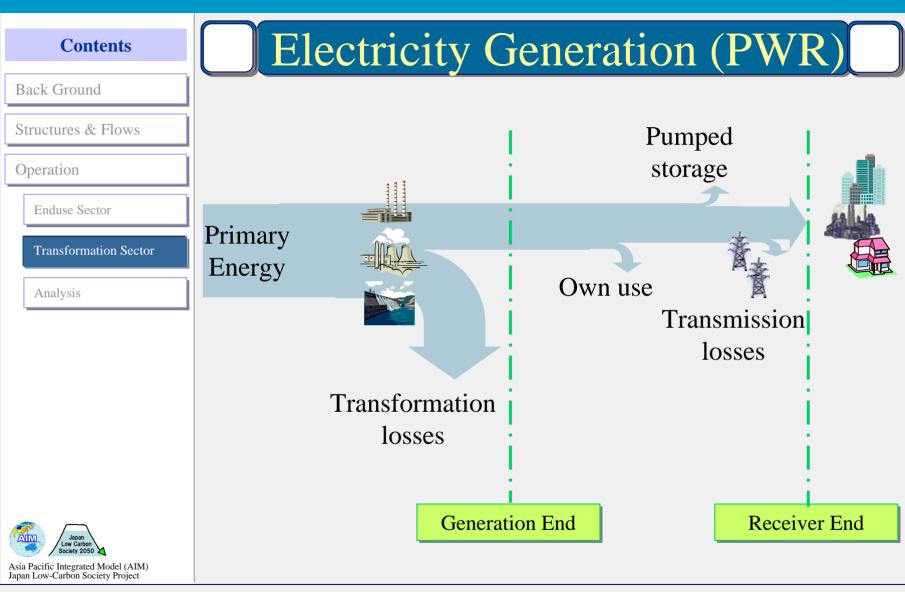
Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis



Electricity Generation (PWR)

• Goal: Primary energy consumed for electricity generation in target year.

Power generation sector

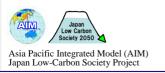
			2050										
	Solver	2000	Supply &	Demand	Only D	emand	Only S	Supply	Nc)			
			А	В	А	В	A	В	А	₿			
1.	Electricity demand at receiver	end											
	Mtoe	98	88	86	88	86	98	98	98	98			
2.	Difference between demand a	and supply											
	Mtoe	12.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
3.	Electricity supply at receiver e	nd											
	Electricity supply Mtoe	103	88	86	88	86	98	98	98	98			
-	Transmission Loss	6.84%	5.31%	5.31%	5.3%	5.3%	5.3%	5.3%	5.3%	5.3%			
4.	Electricity supply before tranm	ission											
I	Electricity supply Mtoe	111	93	91	93	91	104	104	104	104			
F	Pumped storage (PS)	· · ·											
	Ele. demand of PS Mtoe	0	1	1	0	0	1	1	0	0			
	Efficiency	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%			
_	Generation of PS Mtoe	0	1	1	0	0	1	1	0	0			
C	Own use												
	Own use in plant Mtoe	6	4	4	5	5	5	4	6	6			
	Own use rate	(00/	(00((00((00)	(00)	(00)	(00)	(00)	(00)			
	COL	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%			
	GAS	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%			
	OIL	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%		5.0%	5.0%			
	NUC	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%			
	HYD	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%			
	HYD(P) GEO	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%			
	GEU	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%			

Contents

Back Ground

Structures & Flows

Operation


Enduse Sector

Transformation Sector

Analysis

Electricity Generation (PWR)

- Data setting for reference year
 - Electricity demand at receivers end
 - Electricity transmission losses
 - Efficiency of pumped storage (Def: ratio between consumed energy while pumping and generated energy)
 - Own use rate of electricity plant
 - Electricity supply at generation end
 - Primary Energy Consumption

Contents

Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis

Electricity Generation (PWR)

- Data setting for target year (scenario)
 - Electricity transmission losses
 - Efficiencies of pumped storage
 - Own use rate
 - Mixture of energy
 - Thermal efficiency
- Click "Solver"!!
 - "Electricity supply at generation end" is calculated automatically so that the electricity demand of the end-user would be fulfilled
 - Primary energy supply for electricity generation is calculated

Contents

Back Ground

Structures & Flows

Operation

Enduse Sector

Transformation Sector

Analysis

Other energy transformation (EB_SD)

- (a) Energy use for CCS
- (b) Amount of carbon captured
- (c) Heat supply
- (d) Feedstock

(e) Losses of Coal/Oil/Gas during refining processes

2050 A (CM)												
	COL	OIL	GAS	BMS	NUC	HYD	S/W	Heat	H2	ELE	Total	'90=100
Ene <u>rgy</u> Balances												
Power Gnr.	15	0	41	0	92	8	1			100	90	
CCS	(e)								(a)	3	3	
Heat									(4)		0	
Coal/Oil/Gas		2	_					$\langle \cdot \rangle$			2	
Hydrogen			12				13	(C)	-14		11	
Industrial	23	37	45	5			0	0		29	140	
Residential	0	1	1	0			8	0	4	14	27	
Commercial	0	1	1	0			3	0	5	18	28	
Trans. Prv.	0	4	0	2			0	0	3	2	11	
Trans. Frg.	0	3	0	9			0	0	3	1	17	
Enduse	23	48	47	16			11	0	14	64	223	
Total	38	50	100	16	92	8	25	0	0	-0	330	
Feedstock in total	(0	14										
Emission Factor (MtC/Mtoe)	1.05	0.00	0.55	0.00	0.00	0.00	0.00	(0.00)	(0.47)	(0.00)		
CO2 Gnr. (MtC)	40	29	55	0	0	0	0	-	-	-	124	43.6
CO2 CCS (MtC)	-16		-23					-	-	(b)	-39 0 0)
CO2 Ems. (MtC)	24	28.6	33	0	0	0	0	-	-	-	85	30.0

Contents		
Back Ground		
Structures & Flows		
Operation		
Enduse Sector		
Transformation Sector		
Analysis	Analysis	
Japan		
Asia Pacific Integrated Model (AIM) apan Low-Carbon Society Project		

Contents

Factor analysis (Factors)

Back Ground

Structures & Flows

Operation

Enduse Sector

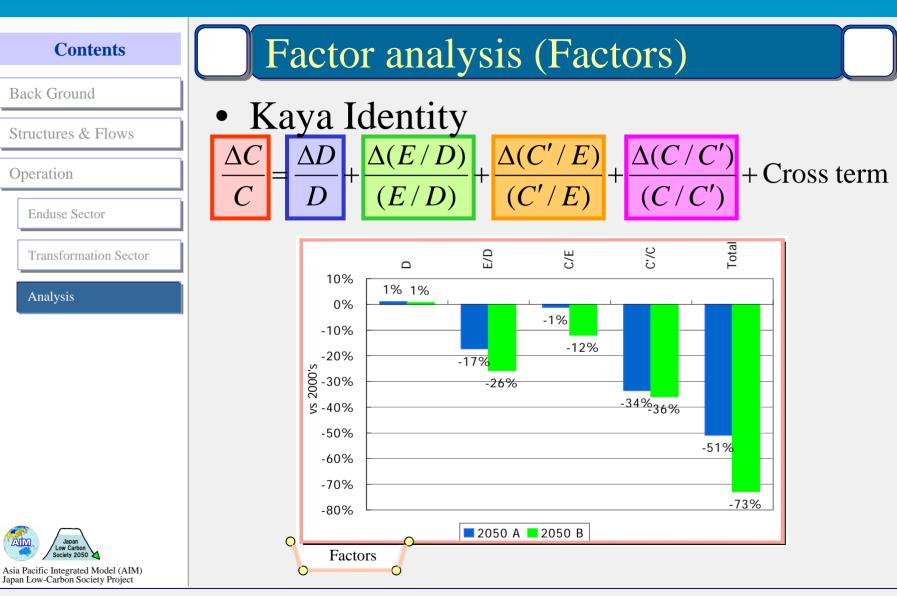
Transformation Sector

Analysis

$$\frac{\Delta C}{C} = \frac{\Delta D}{D} + \frac{\Delta (E/D)}{(E/D)} + \frac{\Delta (C'/E)}{(C'/E)} + \frac{\Delta (C/C')}{(C/C')} + \text{Cross term}$$

- C: CO2 emission
- **D**: Driving forces (service demand)

 $C = D \times \frac{E}{D} \times \frac{C'}{D} \times \frac{C}{C'}$


E: Energy Consumption

C': CO_2 emission without measures in transformation sector

E/D: Energy Intensity

- **C'/E**: CO₂ intensity in end-use sector
- C/C': CO₂ intensity in transformation sector

Application of AIM/Energy Snapshot Tool to Japan - Japan Low Carbon Society Scenario -

Ms. Maho MIYASHITA (TAKIMI) Mizuho Information & Research Institute Prof. P.R. Shukla Dr. Mikiko KAINUMA

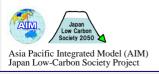
Indian Institute of Management National Institute for Environmental Studies

Contents

Why do we need Low Carbon

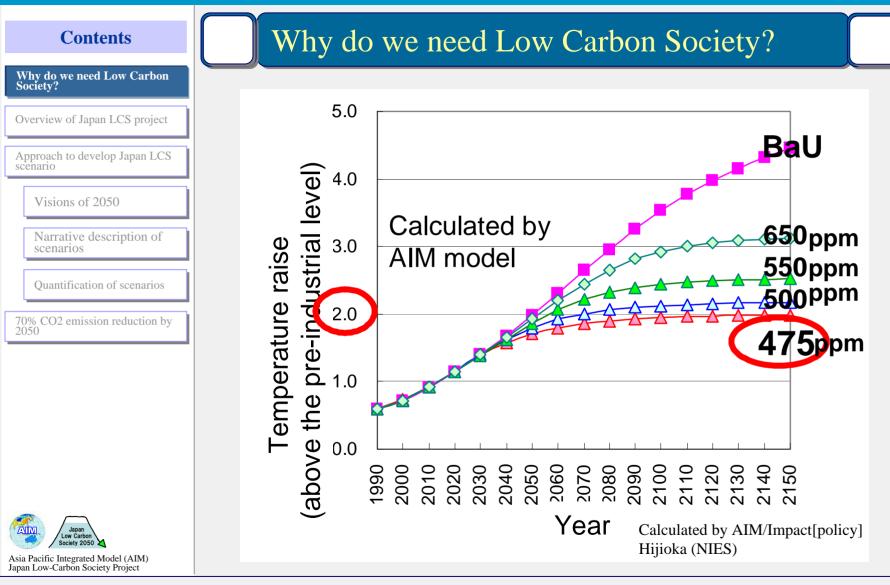
Overview of Japan LCS project

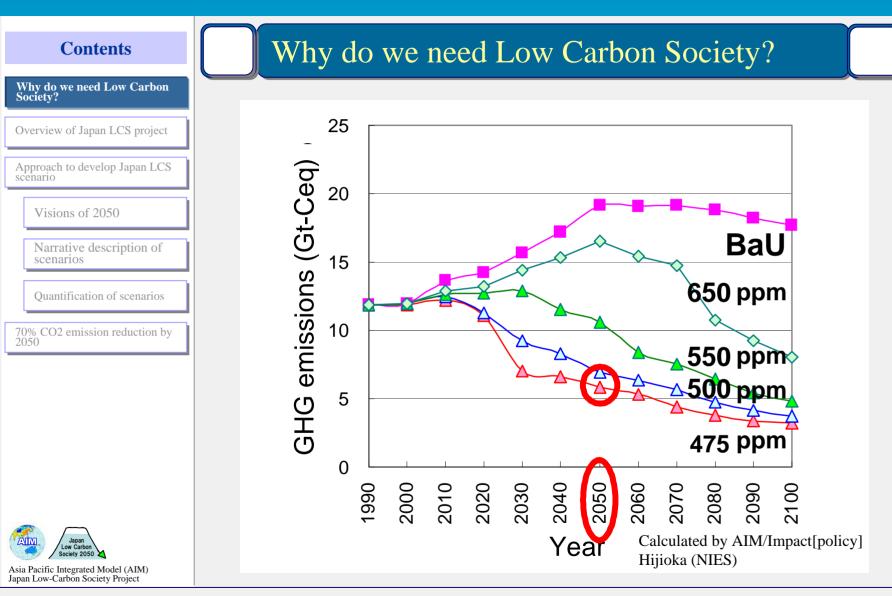
Society?


Approach to develop Japan LCS scenario

Visions of 2050

Narrative description of scenarios


Quantification of scenarios


70% CO2 emission reduction by 2050

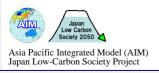
Contents

- Why do we need Low Carbon Society?
- Overview of Japan LCS project
- Approach to develop Japan LCS scenario
 - Visions of 2050
 - Narrative description of scenarios
 - Quantification of scenarios
- 70% CO2 emission reduction by 2050

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project

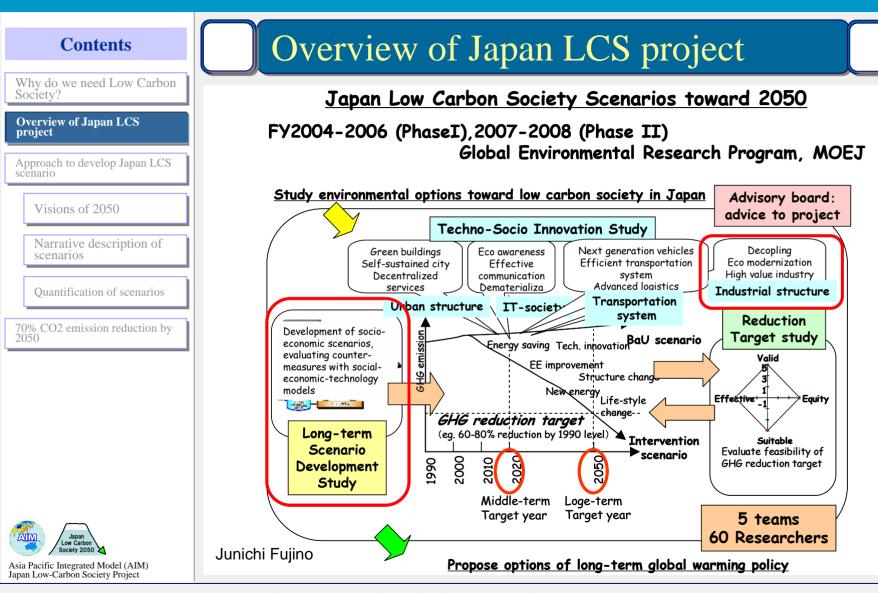

Approach to develop Japan LCS scenario

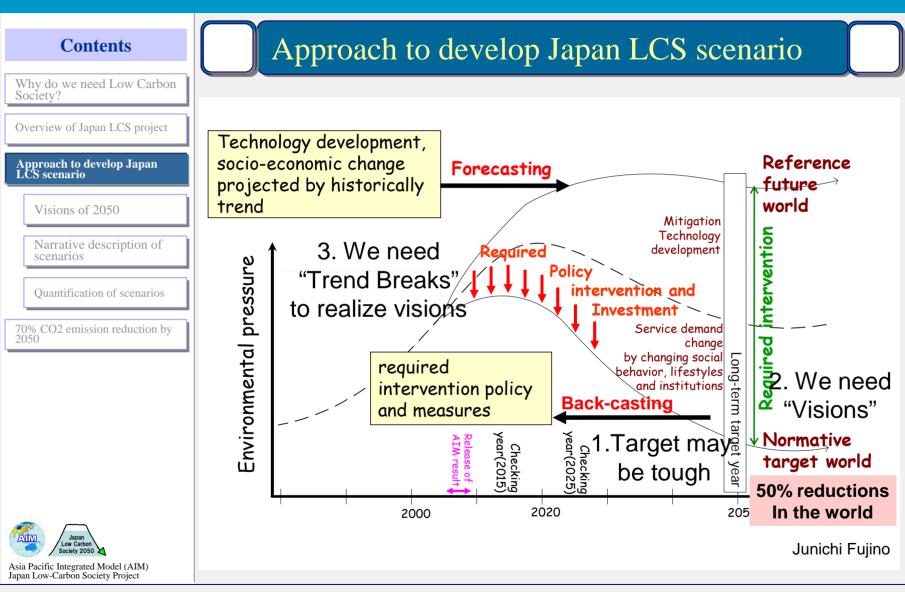
Visions of 2050

Narrative description of scenarios

Quantification of scenarios

70% CO2 emission reduction by 2050




Why do we need Low Carbon Society?

To control temperature raise below 2°C (EU target), Global GHG emissions should be reduced by 50% in 2050

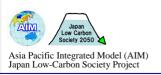
Japanese reduction target in 2050 should be 60-80%

Japan Low-Carbon Society Project

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project


Approach to develop Japan LCS scenario

Visions of 2050

Narrative description of scenarios

Quantification of scenarios

70% CO2 emission reduction by 2050

Visions of 2050

Vision A "Doraemon"	Vision B "Satsuki and Mei"
Vivid, Technology-driven	Slow, Natural-oriented
Urban/Personal	Decentralized/Community
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally
Comfortable and Convenient	Social and Cultural Values
	Akemi Imagawa

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project

Approach to develop Japan LCS scenario

Visions of 2050

Narrative description of scenarios

Quantification of scenarios

70%	CO2	emission	reduction	by
2050				2

Visions of 2050

<u>Doraemon</u> is a Japanese comic series created by Fujiko F. Fujio. The series is about a robotic cat named Doraemon, who travels back in time from the 22nd century. He has a pocket, which connects to the fourth dimension and acts like a wormhole.

Satsuki and Mei's House reproduced in the 2005 World Expo. Satsuki and Mei are daughters in the film "My Neighbor Totoro". They lived an old house in rural Japan, near which many curious and magical creatures inhabited.

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project

Approach to develop Japan LCS scenario

Visions of 2050

Narrative description of scenarios

70%	CO2	emission	reduction	by
2050				

Narrative description of scenarios

Scenario A

<u>Technical progresses in the industrial sectors are considerably high</u> because of vigorous R&D investments by the government and business sectors. The economic activities as a whole are so dynamic that average annual <u>per capita GDP growth rate is kept at the level of 2%</u>. The other reasons for such high economic growth are high rates of consumption in both business and household sectors.

The employment system has been drastically changed from that in 2000 and equal opportunities for the employment have been achieved. Since workers are employed based on their abilities or talents regardless of their sex, nationality and age, the motivation of the worker is quite high in general.

As many <u>women work outside</u>, the <u>average time spent for housekeeping has</u> <u>decreased</u>. Most of the household works are replaced by housekeeping robots or services provided by private companies. Instead, the time used for personal career development has increased.

The new technologies, products, services are positively accepted in the society. Therefore, purchasing power of the consumer is strong and upgrade cycles of the commodities are short.

Household size becomes smaller and the number of single-member households has increased. Multi-dwellings are preferred over detached houses, and the <u>urban lifestyle</u> is more popular than the lifestyle of countryside.

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project

Approach to develop Japan LCS scenario

Visions of 2050

Narrative description of scenarios

Quantification of scenarios

70% CO2 emission reduction by 2050

Narrative description of scenarios

Scenario B

Although average annual growth rate of <u>per capita GDP is approximately 1%</u>, people can receive adequate social services no matter where they live. Volunteer works or community based mutual aid activities are the main provider of the services. Since <u>the levels of medical and educational service in the countryside have</u> <u>drastically improved</u>, continuous migration of population from city to countryside <u>has been observed</u>.

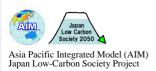
<u>The number of family who own detached dwellings has increased</u>. The trend is especially prominent in the countryside. The size of the houses and the floor area per houses has also increased with the increasing share of detached houses.

The ways people work have also changed. The practice that husbands work outside and wives work at home is not common anymore. In order to avoid the excessive work of the partner, the couples help each other and secure the income according to their life plan. Housework is shared mainly among family members, but free housekeeping services provided by local community or social activity organizations are also available. As a result of the changes in lifestyle, <u>the time</u> <u>spent within family has increased</u>. The time spent on hobby, sports, cultural <u>activities</u>, volunteer activities, agricultural works, and social activities has also increased.

Contents

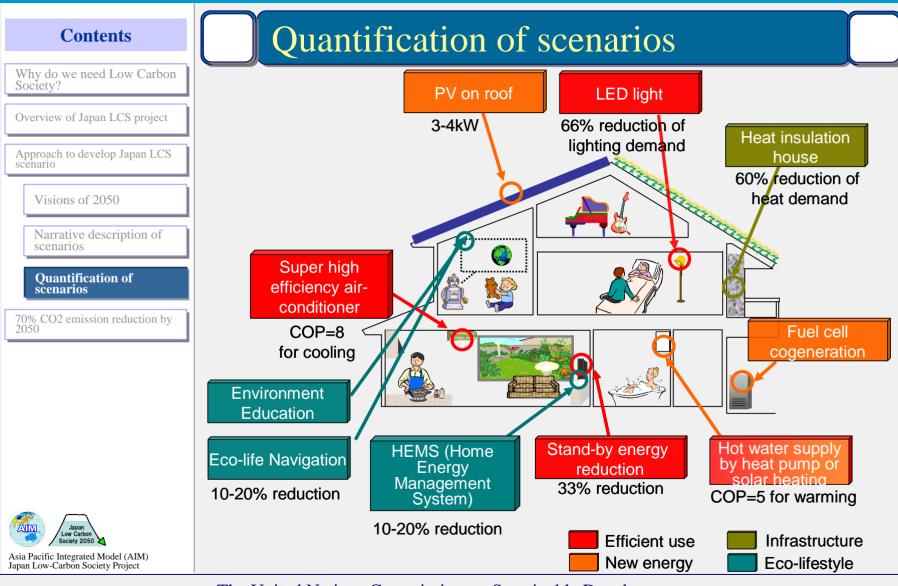
Why do we need Low Carbon Society?

Overview of Japan LCS project


Approach to develop Japan LCS scenario

Visions of 2050

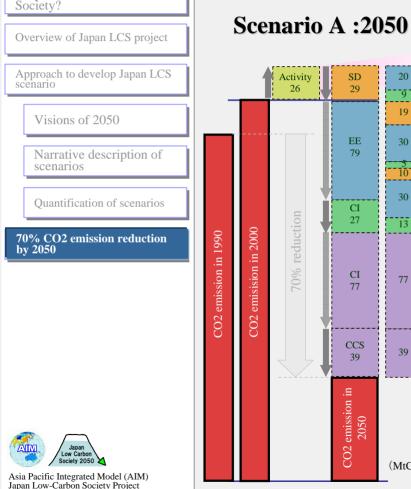
Narrative description of scenarios

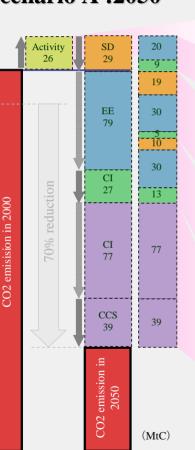

Quantification of scenarios

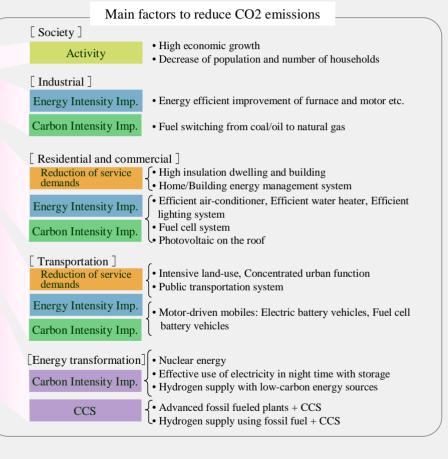
70% CO2 emission reduction by 2050

Quantification of scenarios

	Unit	2000 —		205	50		model
	Unit	2000 —	А		В		model
Population	Mil.	127	94	74%	100	79%	
Household	Mil.	47	43	<i>91%</i>	42	89 %	Population and
Average number of person per household		2.7	2.2	81%	2.4	89 %	Household model
GDP	Tril. JPY	520	1009	<i>194%</i>	668	128%	_
Share of production							Inter-sector and
Primary	%	1.7%	1.1%		2.3%		Macro Economic
Secondary	%	27.5%	18.3%		21.8%		Model
Teritary	%	70.8%	80.5%		75.9%		
Office floor space	Mil. m2	1,654	1,934	117%	1,718	104%	Building Dynamics Model, Inter-sector and Macro Economic Model
Travel passenger volume	bill. p-km	1,399	948	68%	1,010	72%	Transportation
Private car	%	53.6%	40.2%		41.6%		demand model,
Public transport	%	38.9%	52.1%		50.6%		Inter-sector and
Walk/bicycle	%	7.5%	7.7%		7.8%		Macro Economic
Freight transport volume	bill. t-km	580	465	80%	500	86%	Model
Industrial production							
Steel production	Mil. t	107	74	<i>69%</i>	63	59%	Inter-sector and
Etylen production	Mil. t	8	4	50%	3	<i>38%</i>	Macro Economic
Cement production	Mil. t	82	56	68%	45	55%	Model
Paper production	Mil. t	32	17	53%	28	88%	


The United Nations Commission on Sustainable Development


30 April – 11 May, 2007

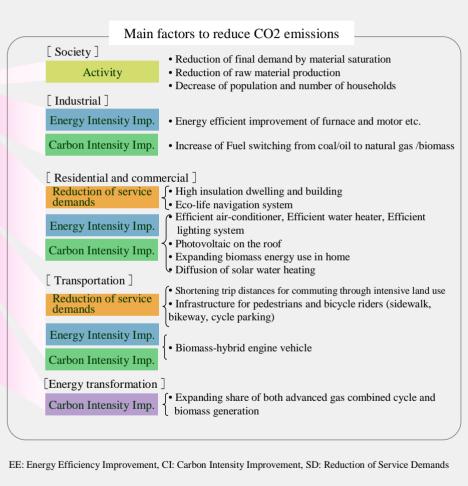

Contents

Why do we need Low Carbon

70% CO2 emission reduction by 2050


EE: Energy Efficiency Improvement, CI: Carbon Intensity Improvement, SD: Reduction of Service Demands

Contents


Why do we need Low Carbon Society?

Overview of Japan LCS project Approach to develop Japan LCS scenario Visions of 2050 Narrative description of scenarios Ouantification of scenarios 70% CO2 emission reduction by 2050

Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project

Scenario B :2050

The United Nations Commission on Sustainable Development 30 April – 11 May, 2007

70% CO2 emission reduction by 2050

Contents

Why do we need Low Carbon Society?

Overview of Japan LCS project

Approach to develop Japan LCS scenario

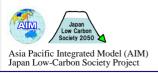
Visions of 2050

Narrative description of scenarios

Quantification of scenarios

70% CO2 emission reduction by 2050

Global Environmental Research Fund (GERF/S-3) Japan-UK Joint Research Project "Developing visions for a Low-Carbon Society (LCS) through statistable development"


> Japan Scenarios towards Low-Carbon Society (LCS)

 -Feasibility study for 70% CO₂ emission reduction by 2050 below 1990 level-

February 2007

"2050 Japan Low-Carbon Society" scenario team National Institute for Environmental Studies (NIES), Kyoto University, Ritsumeikan University, and Miraho Information and Research Institute.

Please see more details !!! at

http://2050.nies.go.jp/index.html

Application of AIM/Energy Snapshot Tool to Asian Countries

Prof. P.R. Shukla Dr. Jiang Kejun **Prof. Ram Shrestha** Dr. Mikiko Kainuma Ms. Maho Miyashita (Takimi) Mizuho Information & Research Institute

Indian Institute of Management China Energy Research Institute Asian Institute of Technology National Institute for Environmental Studies

Contents

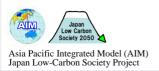
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results

Application to India - Introduction of Analysis of Residential Sector -

Contents

Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050

Simulation Results

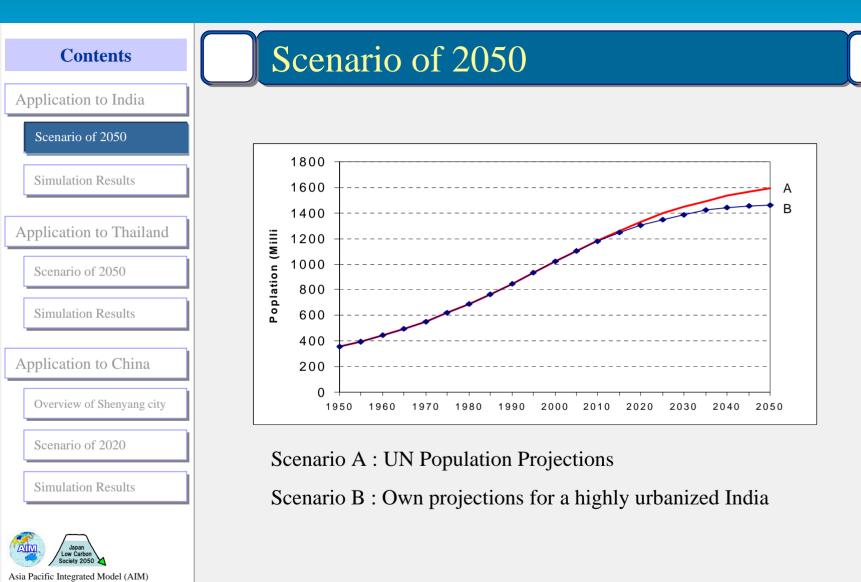
Application to China

Overview of Shenyang city

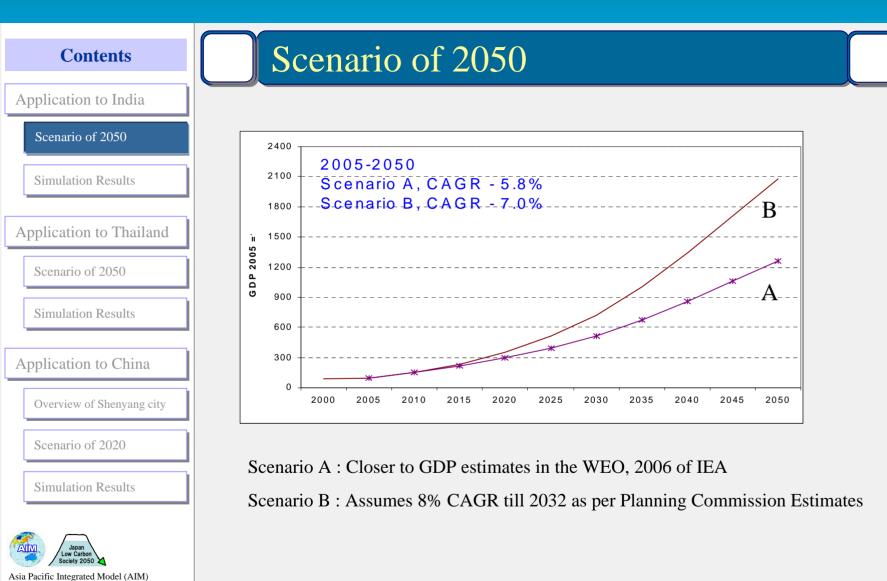
Scenario of 2020

Simulation Results

Scenario of 2050


Scenario A

A large part still resides in villages though demographic indicators have changed but still a long improvement to go. The economy is dependent largely on the manufacturing sector.


Scenario B

Policy makers are aspiring for characterized by high growth rates, rapidly improving demographic indicators, driven by economic reforms and high levels of social spending. Higher penetration of technologies takes place, aided by close cooperation with the developed countries in the east and west. Higher incomes also bring about enhanced environmental consciousness amongst people.

Japan Low-Carbon Society Project

Japan Low-Carbon Society Project

Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project

Contents	Scenario of 205	0	
Application to India Scenario of 2050	Assumption of	Service De	mand
Simulation Results			2000=1
Application to Thailand	Service	2050 A	2050 B
Scenario of 2050	Cooling (AC + Cooler)	21.6	12.9
Simulation Results	Cooking (Stove)	1.5	1.6
Simulation Results	Cooking (Elect)	3.5	3.0
Application to China	Lighting	3.4	3.1
Overview of Shenyang city	ICT	33.3	16.7
Scenario of 2020	Appliance	42.3	19.2
Simulation Results			

Scenario of 2050

Application to India

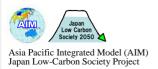
Contents

Scenario of 2050

Simulation Results

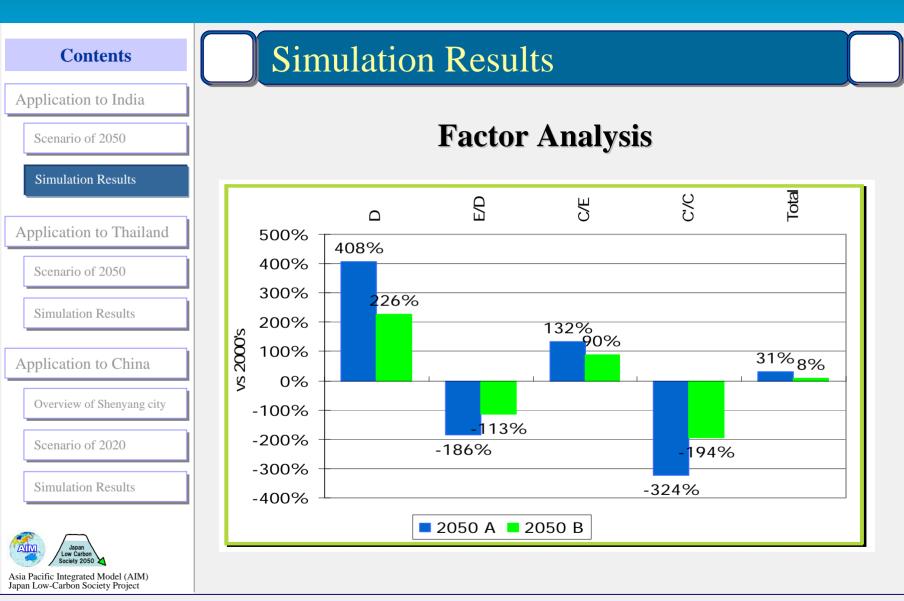
Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city


Scenario of 2020

Simulation Results

Assumption of Energy Efficiency

Service		2000			2050					
	Oil	Gas	Bmass	S/W	Elect	Oil	Gas	Bmass	S/W	Elect
Cool					2.90					4.00
Cooking (Stove)	0.60	0.60	0.10		0.50	0.65	0.65	0.50	0.50	0.70
Cooking (Elect)					1.00					1.11
Lighting					1.00					1.50
Refrigerator					1.00					1.50
ICT					1.00					2.00

Contents

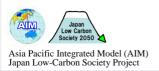
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results

Application to Thailand

- Introduction of Analysis of Transportation Sector -

Contents

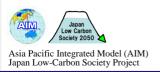
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results

Scenario of 2050

Scenario A

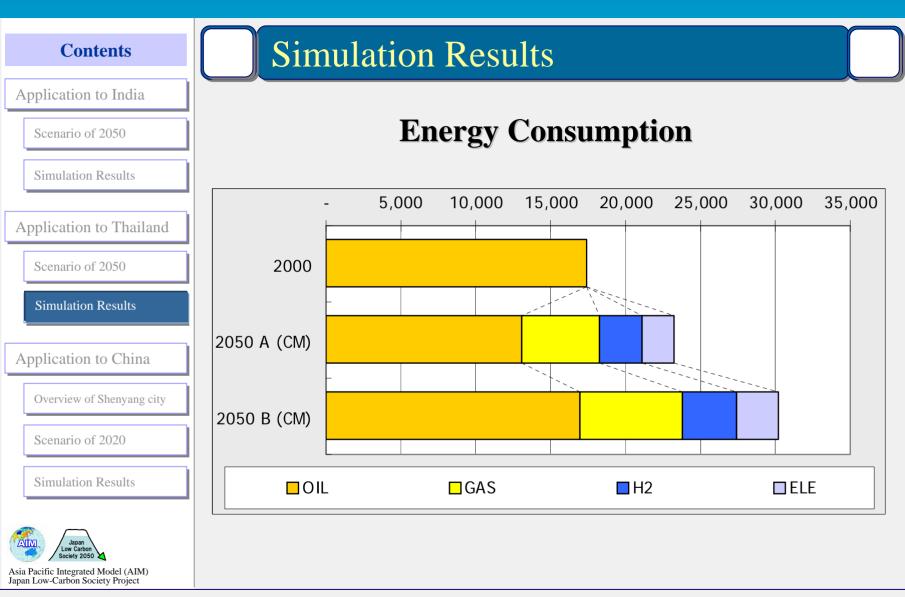
This scenario is characterized by a Thai economy concentrated on industries that have a comparative advantage in the world market. In this scenario, Thailand follows closely the national development plans and policies. The economic growth is moderate at 5% per year during 2000-2030 and then slows down to 4% per year for the remaining twenty years of the time period considered.

Scenario B

This scenario is characterized by Thailand being more and more integrated into global markets. Market forces are predicted to lead to high economic growth and there would be a faster transition towards industry and commerce based economy. The GDP is assumed to increase by 6% per year during the first thirty years (2000-2030) and by 5% per year in the remaining twenty years (2030-2050) reflecting the possible slowdown of the economic growth

Contents

Scenario of 2050


Application to India			
Scenario of 2050			
Simulation Results			
Application to Thailand			
Scenario of 2050			
Simulation Results			
Application to China			
Overview of Shenyang city			
Scenario of 2020			
Simulation Results			

Energy efficiency projection:

• Efficiency of oil, gas and electricity based vehicles doubles by 2050

Fuel mix projection

 In road transport, by 2050 hydrogen substitutes 20% of the oil and CNG substitutes 25% of the oil. In rail transport, electricity substitutes 50% of the oil by 2050.

Contents

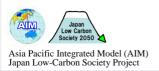
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results

Application to China

- Introduction of Analysis of Residential Sector in Shenyang City -

Contents	Overview of S	Shenyang city
Application to India		
Scenario of 2050		Shenyang city
Simulation Results		
Application to Thailand		内蒙古自治
Scenario of 2050		第1880 515 从目的起色 平夏回族 山 北 自治区 西 1省 山東省 。 音海省
Simulation Results		
Application to China		
Overview of Shenyang city	Population: 7.2 million	要南省 50万族 広東省 省 自治区 音港
	Area: 12,980 km2	Copyright© 2003-2004 中国まるごと百科事典 海衛省
Scenario of 2020	Average Temperature :8.3°	C
Simulation Results	Latitude: 42 degrees north l	atitude
	Disposable Income: 16,393	yuan (the 20 th among 600 cities)
	•	busand yuan : 1.1toc/10 thousand yuan
Japan Low Carbon Society 2050		(80% of country average)
Asia Pacific Integrated Model (AIM) Japan Low-Carbon Society Project		(0070 of country average)

Contents

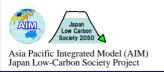
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050


Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results

	The method used for calculation	Estimated Value (2000=1)		
Population	Estimation from rate of population increase	1.13		
Household	Estimation from population and size of household	1.22		
GDP	Based on th 11 th 5 year plan	4.01		
Average floor space	Estimation from GDP/Capita	2.05		
Diffusion Rate of District Heating System	Same as value of 2004 (80%)	1.51		
Diffusion Rate of Appliances	Estimation from past trend (1985- 2004)	1.67		
Energy	15% increase (BaU1)	1.15(BaU1)		
efficiency	30% increase (BaU2)	1.3(BaU2)		

Scenario of 2020

Contents

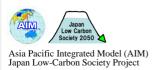
Application to India

Scenario of 2050

Simulation Results

Application to Thailand

Scenario of 2050

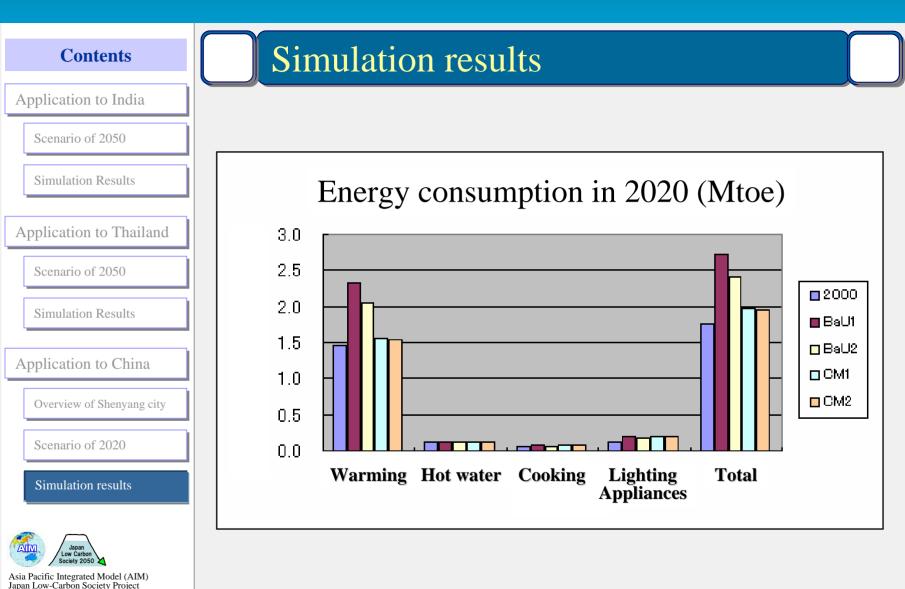

Simulation Results

Application to China

Overview of Shenyang city

Scenario of 2020

Simulation Results



	The method used for calculation	Estimated Value (2000=1)
Warming	Average floor space * Energy service demand / floor space	2.05 * 1
Hot water	Number of households * Intensity	1.22 * 1
Cooking	Number of households * Intensity	1.22 * 1
Lighting/Appli ances	Number of households * Diffusion rate of appliances	1.22 * 1.67

Scenario of 2020

Contents	Scenario of 2020					
Application to India Scenario of 2050 Simulation Results						
Application to Thailand	BaU1	BaU2	CM1	CM2		
Scenario of 2050 Simulation Results	Energy efficiency : 15% increase	Energy efficiency : 30% increase	BaU1+ Introduction of energy saving house (50%)	BaU1+ Introduction of heat pump (50%)		
Application to China Overview of Shenyang city Scenario of 2020 Simulation Results						

