2050年脱炭素社会に向けた 100%自然エネルギーシナリオ

本資料は、2020年12月、WWFジャパンの委託により当研究所が作成した「脱炭素社会シナリオ2050」から抜粋した。

日本の2050年 脱炭素社会シンポジウム

国立環境研究所 社会環境システム研究センター

2021年3月10日

システム技術研究所 所長 槌屋 治紀

将来のエネルギー需要の推定方法

X

将来のエ ネルギー 需要 基準年の エネル ギー需要 2015年 活動度変化人の素材を動し、素材を動力、素材の長寿命化、情報化(ペールス)

効率向上 効率向上 断熱住宅、 LED照明、 ピートポン 司、電気ど 動車など

将来の最終エネルギー需要は、基準年のエネルギー需要、将来の活動度変化、効率向上の積できまる。活動度は、最終用途ごとに適切な指標から推定する。

エネルギーシナリオ

	2030年	2050年
目標	2013年レベルからCO2排出をおよ そ50%に削減する	すべてのエネルギー用途に自然エネルギーを供給し、CO2排出をゼロにする
エネルギー 需要	率化が進み、これに比例してエネ	人口減少80%と産業構造変化に伴って活動度はさらに減少、合わせてエネルギー効率向上により半分以下に減少
エネルギー 供給	残りをガス、石油、原子力(*)から	太陽光、風力、水力、地熱、バイオマス、 周囲熱など、100%自然エネルギーを電 力と熱・燃料需要に供給
民生部門		暖房・温水には余剰電力+ヒートポンプ または太陽熱を供給
産業部門	産業構造変化が進展。石炭を鉄鋼・紙パルプ・セメント産業に、ガス を熱需要に供給	産業構造変化がさらに進展。余剰電力から水素を生産して鉄鋼業に、さらに余剰電力を直接加熱またはヒートポンプにより熱需要に供給
運輸部門	乗用車のEV化が進展する。石油 をトラック、船舶、航空機に供給	車上PVが普及。乗用車はEVに、トラックはEVとFCVになる。余剰電力から水素を 生産して船舶、航空機に供給

(*)原子力についてはすでに再稼働決定したもの、および適合性審査完了済・申請済は稼働するが、30年以上経過したものは稼働せず、新規建設はしない。2030年には3基のみ322万kW(泊、東通、志賀)が稼働、2038年以降ゼロになると想定した。

日本の将来人口推計、中位推計 国立社会保障・人口問題研究所 2017

日本の人口は2050年には2015年の80%に減少すると 予測されている。人口に比例して社会の活動度が減少 し、エネルギー需要が減少する。

産業部門の構造変化の推定

総合変化量=人口減少*素材輸出減少*建物長寿命化*情報化

一心口久10里一八口//// 宋竹刊山//// ** 宋竹刊山/// ** ** ** ** ** ** ** ** ** ** ** **						
	活動量の要因別変化量(%)					
2015年→2050年	人口減少	輸出増 減	建物の長 寿命化	情報化	総合変化 量	
産業						
農林水産鉱建設業	80%	100%	100%	100%	80.0%	
製造業						
食品飲料製造業	80%	100%	100%	100%	80.0%	
繊維工業	80%	100%	100%	100%	80.0%	
パルプ・紙・紙加工品製造業	80%	95%	98%	85%	64.6%	
化学工業 (含 石油石炭製品)	80%	70%	98%	100%	54.9%	
プラスチック・ゴム・皮革製品製造業	80%	70%	98%	100%	54.9%	
窯業·土石製品製造業	80%	90%	80%	100%	57.6%	
鉄鋼·非鉄·金属製品製造業	80%	70%	95%	100%	53.2%	
機械製造業	80%	150%	100%	120%	144.0%	

産業構造の変化

産業	2015	2030	2040	2050		産業の活動度の変化	
農林水産鉱建設業	100%	94%	87%	80%		日常生活に関係が深い産業は人口比で	
食品飲料製造業	100%	94%	87%	80%	 	80%に減少	
繊維工業	100%	94%	87%	80%		00701〜 (水少	
パルプ・紙・紙加工	100%	87%	76%	65%	1		
化学工業(含 石油	100%	84%	71%	56%		 材料資源消費に関係が深い産業は60º	
プラスチック・ゴム・	100%	84%	71%	56%		近くに減少する	
窯業·土石製品製	100%	85%	71%	58%		担いに原子する	
鉄鋼·非鉄·金属製	100%	84%	68%	53%			
機械製造業	100%	115%	130%	144%		知能情報機械など輸出に貢献する産業が	
						144%に増加する	

日常生活に関係が深い農林・食品・繊維産業は人口減少により減少する。紙、プラスチック、セメント、鉄鋼など材料資源を生産するエネルギー集約型産業の活動度が縮小して、エネルギー消費が小さくなる。これに対して、コンピュータ、自動運転自動車、ロボット、AI機器などを製造する知能情報機械産業の活動度が増大し、輸出を伸ばす。

自然エネルギーの賦存量、導入可能量

	導入量	賦存量	導入ポテンシャ ル2050
中小水力		9.8 GW	9 GW
住宅PV	11.2 GW	北帯に十キい	209 GW
公共PV	40.6 GW	非常に大きい	2536 GW
陸上風力	3.2 GW	1486 GW	284 GW
洋上風力		2785 GW	1120 GW
地熱	0.54 GW	14.1 GW	11.9 GW
バイオマス(電力)	4.1 GW		7.4 GW
バイオマス(熱)	52TWh	438TWh	181 TWh
太陽熱	5.8TWh		136 TWh
地中熱		1403 TWh	1050TWh

出典: H29年度自然エネルギーに関するゾーニング基礎情報の整備・公開などに関する委託業務報告書(H30年3月環境省)など

電力需要Aと熱・燃料需要

電力需要Aは2015年から2030年には85%に、2050年には62%に減少する。熱・燃料需要は産業構造の変化と輸送の効率化により大きく減少し、2015年から2030年には76%に、2050年には42%に減少する。2050年には熱・燃料需要の一部は電力需要Bとして、余剰電力から供給される。

8

ダイナミックシミュレータ

地域ごとの電力需給を1時間ごとに1年間計算する

地域として、日本全体あるいは、沖縄以外の9電力地域を設定できる。9電力地域のうちのいくつかのグループを一つの地域として設定して計算できる。

入力: 地域の気象データ (AMEDAS2000) 地域の電力需要A 火力・水力など既存発 電設備、蓄電容量

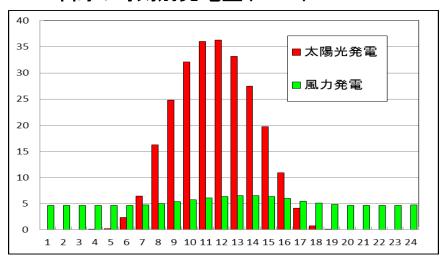
太陽光・風力発電設備

Dynamic Simulator

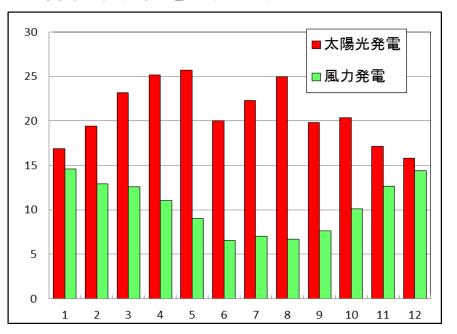
出力: 各発電設備の発電量

最大不足電力

余剰電力


揚水発電使用量

バッテリー使用量

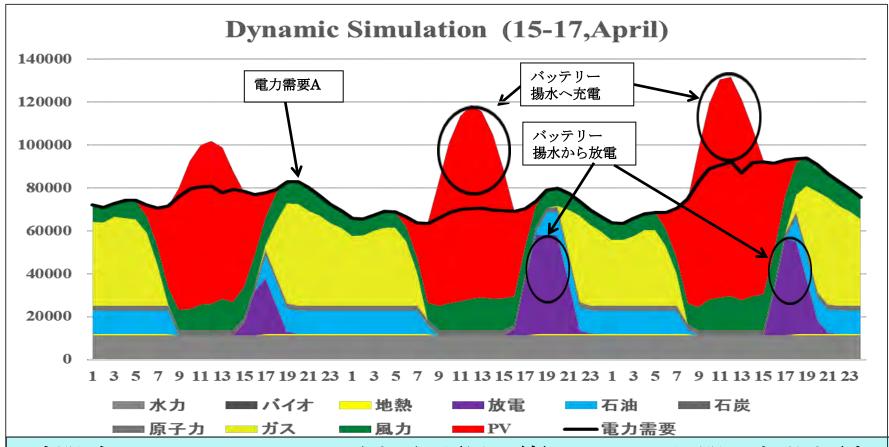

蓄電の想定:揚水発電2600万kW(容量260GWh)、バッテリー100~300GWh

電力の不足が生じないように電力需要Aの110~190%を供給可能な発電設備を想定し、太陽光と風力の変動から生じる余剰電力を電力需要B (水素、高温熱、低温ヒートポンプ用)に供給する。

1年間の時刻別発電量(TWh)

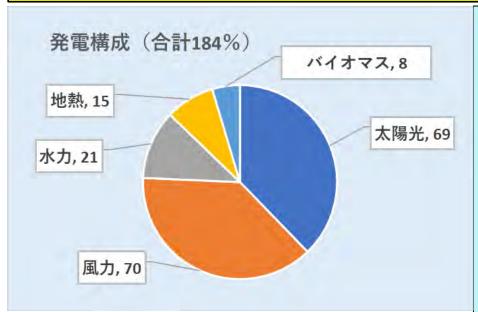
1年間の月別発電量(TWh)

太陽光と風力を組合わせると効果的


拡張AMEDAS2000の気象データから太陽光については842地点すべて、風力は風況のよい114地点を選択した。

太陽光は6~18時に有効、春から 夏にかけて大きくなり、冬は小さい。風力発電は24時間どの時間 でも発電しているが、季節的にみ ると、太陽光と逆であり、夏に小さ く冬が大きい。

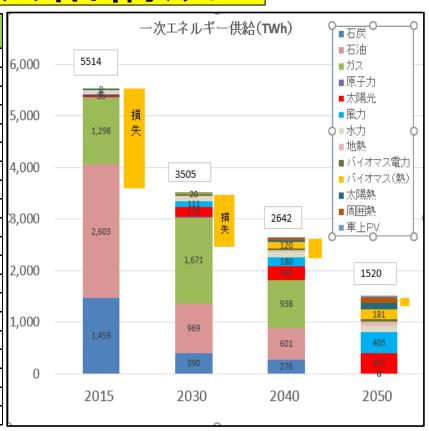
風力の割合が大きくなると、時間 的な供給は安定し、不足が生じる 可能性は少なくなってくる。


2030年自然エネルギーによる電力供給(3日間)

(日本全国842地点の拡張アメダス気象データを使用)

1時間ごとのシミュレーション。電力需要(黒い線)に対して、昼間は太陽光(赤色)が大きな供給源になり、不足分は風力(緑色)とガス火力(黄色)が補っている。また昼間に生じた余剰分を、揚水発電(260GWh)とバッテリー(100GWh)に蓄電しておいて、夜間に放電(紫色)。水力と地熱は一定の電力を供給。

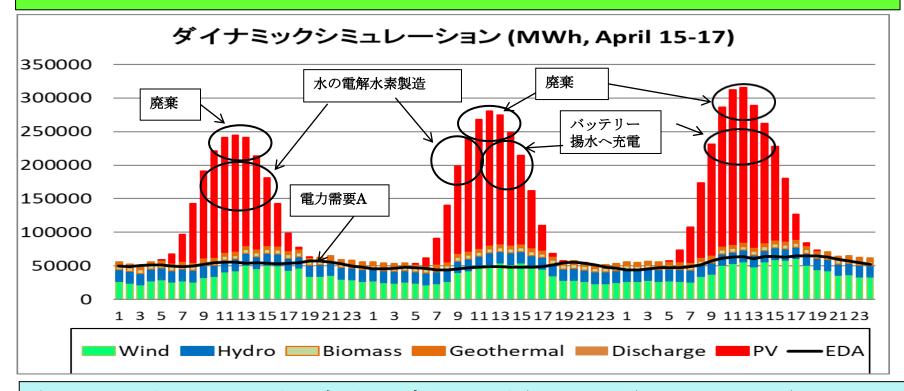
2050年のシミュレーション


	規模	単位	
太陽光発電容量	359	GW	
風力発電容量	153	GW	
揚水発電/バッ	260/ 300	GWh	
テリー容量	,		
年間電力需要	578	TWh/年	
年間平均電力	66	GW	
ピーク電力需要	100	GW	
発電量合計	1,063	TWh/年	

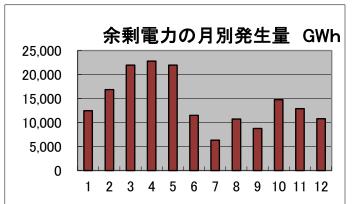
発電量	TWh/年
太陽光	401
風力	403
水力	122
地熱	87
バイオマス	49
合計	1063

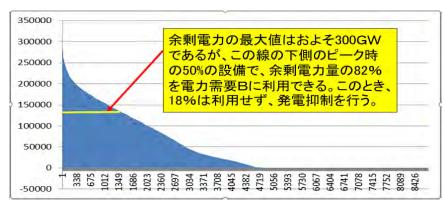
2050年の電力供給はす べて自然エネルギーであ る。太陽光69%、風力70 %、水力21%、バイオマ ス8%、地熱が15%となっ ている。発電量合計は 1063TWh(184%)であり 、これは電力需要Aを100 %として、余剰が84%に なる。太陽光359GW、風 力153GW、蓄電用に揚 水発電260GWh、バッテ リー300GWhの利用を想 定している。

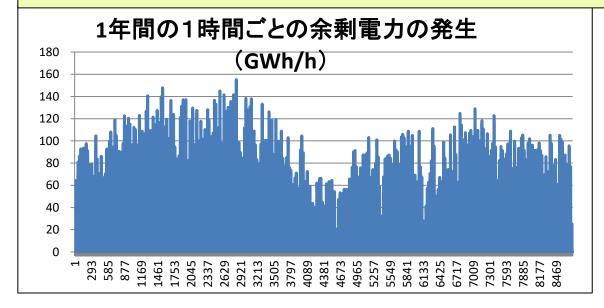
エネルギー供給構成


		1	1		
	TWh	2015	2030	2040	2050
	石炭	1,459	390	276	0
	石油	2,603	969	601	0
	ガス	1,298	1,671	938	0
	原子力	9	19	0	0
	太陽光	35	179	260	401
	風力	8	111	180	403
供給	水力	87	100	110	122
	地熱	4	5	30	87
	パイオマス電力	8	31	32	49
	バイオマス(熱)	0	20	120	181
	太陽熱	3	10	40	133
	周囲熱	0	0	50	104
	車上PV	0	0	5	40
供給計	小計	5,514	3,505	2,642	1,520
損失	発電・水素転換ロス	-2,220	-920	-658	-46
识人	余剰電力ロス			-12	-87
最終	電力需要	928	790	676	578
需要	熱・燃料需要	2,364	1,795	1,295	809
而安	合計	3,293	2,585	1,972	1,387
	電力のRE割合(%)	15.3	53.9	90.5	183.7

2030年には合計3505TWh、2050年には1520TWh。棒グラフの右の黄色Boxは損失を示す。2030年までは発電損失が大きいが、次第に小さくなり、水素転換ロスと余剰電力ロスに代わってゆく。電力以外に、車上PV、太陽熱、ヒートポンプ利用の周囲熱を供給源として計上している。


2050年自然エネルギーによる電力供給(3日間)


(日本全国842地点の拡張アメダス気象データを使用)


太陽光発電と風力発電の変動を、揚水発電(260GWh)とバッテリー(300GWh)からの放電が補う。地熱発電は1年中一定の電力を供給する。ピークの一部は廃棄するが、余剰分は揚水発電/バッテリーへの充電、FCV用電解水素の生産、EVの充電、産業用高温熱、ヒートポンプで熱需要に使う。

余剰電力の利用:時間的にシフト可能な電力需要Bへの供給 (EV•FCV、水素製鉄、中高温加熱、ヒートポンプ用)

すべてを捕獲することは経済的ではない。負荷持続曲線(右)を作成して検討し、ピーク時の50%の規模の設備で、82%を捕獲、18%はロスに。

変動する太陽光と風力 のため余剰電力が生じ る。これを電力需要B に利用する。その発生 は4月に最大、7月に最 小となっている。6~7月 には梅雨で太陽光が 小さく、夏に風力が最 小になるため。

自然エネルギーの供給(2050年、数値はTWh)

自然エネルギーによ る発電

水力、太陽光、風力、地熱、バイオマス

余剰電力

太陽光、風力

太陽熱(133)、バイオマス(181)、周囲熱(104) 車上PV(40)

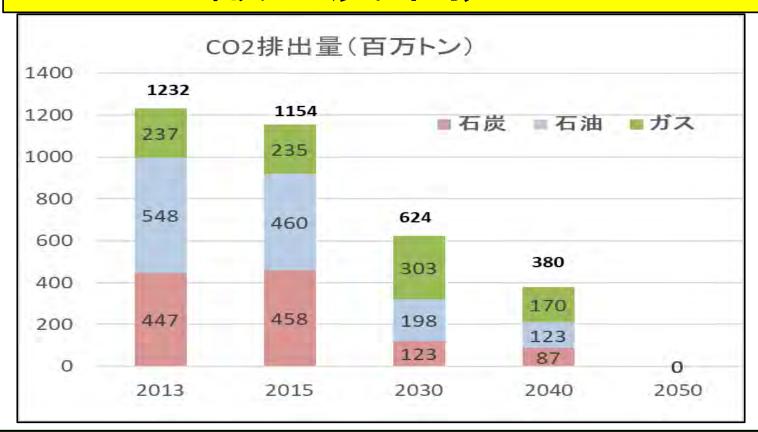
電力需要Bは、時間的に柔軟にシフト可能な需要であり、デマンドレスポンス、天気予報に応じて生産調整を行う。

電力需要A₍₅₇₈₎ 照明、モータ、エアコン、エレクトロニクス

電力需要B(392)

EV(49) • FCV(23)、水素 製鉄(70)、船舶(20)、 中温 • 高温熱(173)、 航空機燃料(20)

低温熱、ヒートポンプ(31、民生用COP=5, 産業用COP=3)、家庭・ 業務用


太陽光と風力の設置面積

供給源	GW	単位面積(W/m2)	面積 (km2)	国土に占める割合(%)
住宅PV	213	66W/m2	3227	0.85
公共PV	147	100W/m2	1470	0.39
風力	153	20MW/100ha	7650	2.02
		_		

国土は37.8万km2

2050年、太陽光360GWの設置に必要な面積は、国土面積に対して住宅0.85+公共0.39=1.24%であり、風力153GWでは2.02%である(風車を通過した風が上空からエネルギーをふたたび得るために必要)。現在の国土の利用状況は、森林66%、農地13%、住居5%、道路3%であり、自然エネルギーの設備に必要な面積は、国土の1~2%の程度になる。

二酸化炭素排出量

2013年には12.3億トン、2030年には6.24億トン、2040年には3.8億トン、2050年にはゼロ。2013年からみると2030年にはマイナス49%、2040年にはマイナス69%になる。

概要

2030年には、石炭火力を廃止でき、その分はガス火力+太陽光+風力で供給。電力の50%が再エネになる。CO₂は50%に削減。

2050年には人口が80%に減少し活動度の減少と 効率向上によりエネルギー需要は半減。産業構 造の転換により鉄鋼・セメント・化学・製紙の 活動が50~60%に減少、情報機械産業が140%に 増加。鉄鋼生産は半減し70%は電炉、30%は水 素製鉄で生産。乗用車はすべてEVになり効率が3 ~4倍に向上。国土面積の1~2%を使用し、太 陽光360GW、風力153GWとなり、電力と燃料需 要に再エネ100%供給、CO2はゼロになる。