AIM/Material Model

Features, model and necessary data

Toshihiko MASUI and Ashish RANA

National Institute for Environmental Studies

Session 4: Asia Pacific Integrated Model (AIM): Introduction to Component Models (Cont.)

APEIS Capacity Building Workshop on Integrated Environment Assessment in the Asia Pacific Region

October 24-26, 2002 Hotel Grand Inter-Continental, New Delhi, India

Coverage in this workshop

- Summary (This session)
 For understanding AIM/Material model
 - What is AIM/Material model?
 - Model formulation
 - Necessary data for simulation
 - Future scenario
- Training (Session 5)
 - Operation of AIM/Material model
- Application (Session 7)
 - Application of AIM/Material model to India and Japan

Features of AIM/Material Model

- Top-down model
- Domestic model
- Computable General Equilibrium model
- Recursive dynamics
- Treatment of pollution generation, management and discharge
- Activity of environmental industry and environmental investment
- Consistent material balance
- Link with technology model such as AIM/Emission model for technology progress

We have been developing AIM/Material for both CO2 and other environmental problems.

Structure of AIM/Material Model

Production sector

- Input: capital, labor, energy, other intermediate input, pollution (inputs for pollution management)
- Output: commodity

Household

- Endowment: capital, labor
- Demand: household final consumption, investment

Government

- Revenue: tax including environmental tax
- Demand: government final consumption, government investment

Structure of AIM/Material Model

Procedure of model analysis

- 1. Formulation of model
- 2. Preparation of dataset in initial year, and calibration
- 3. Preparation of future scenarios
- 4. Simulation
 - i. Reference case
 - ii. Policy case

Social account matrix for AIM/Material

			Prod	uction s	sector	Ţ,	Investment					lt (
		Sector 1	Sector 2	Sector 3	Final Consumption	Sector 1	Sector 2	Sector 3	Supply	Price	Endowment	
	iate	Commodity 1	X ₁₁	X ₁₂	X ₁₃	C_1	I ₁₁	I ₁₂	I ₁₃	Y ₁₁ +Y ₂₁ +Y ₃₁	P ₁	
	Intermediate inputs	Commodity 2	X_{21}	X ₂₂	X ₂₃	\mathbb{C}_2	I ₂₁	I ₂₂	I ₂₃	Y ₁₂ +Y ₂₂ +Y ₃₂	P ₂	
Input	Inte	Commodity 3	X_{31}	X ₃₂	X ₃₃	C_3				Y ₃₃	P ₃	
		Capital	K_1	K_2	K ₃						P_{K}	K [*]
		Labor	L_1	L_2	L_3						$P_{\rm L}$	L^*
	F	Final disposal			W_3						P_{W}	\mathbf{W}^*
ut	(Commodity 1	Y ₁₁	Y ₂₁	Y ₃₁						P_1	
Output	(Commodity 2	Y ₁₂	Y ₂₂	Y ₃₂						P_2	
0	(Commodity 3			Y ₃₃						P ₃	

Formulation of AIM/Material

- Market equilibrium
 - Produced commodity

$$P_{i} \left\{ \sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_{i} + \sum_{j=1}^{3} I_{ij} \right) \right\} = 0$$

$$P_{i} \ge 0$$

$$\sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_{i} + \sum_{j=1}^{3} I_{ij} \right) \ge 0$$

- production factor (capital, labor, ...)

$$P_{K}\left\{K^{*} - \sum_{j=1}^{3} K_{j}\right\} = 0, \ P_{K} \ge 0, \text{ and } K^{*} - \sum_{j=1}^{3} K_{j} \ge 0$$

$$P_{L}\left\{L^{*} - \sum_{j=1}^{3} L_{j}\right\} = 0, \ P_{L} \ge 0, \text{ and } L^{*} - \sum_{j=1}^{3} L_{j} \ge 0$$

$$P_{W}\left\{W^{*} - \sum_{j=1}^{3} W_{j}\right\} = 0, \ P_{W} \ge 0, \text{ and } W^{*} - \sum_{j=1}^{3} W_{j} \ge 0$$

Formulation of AIM/Material

Balance of production sector

$$\sum_{i=1}^{3} P_i X_{ij} + P_K K_j + P_L L_j + P_W W_j = \sum_{i=1}^{3} P_i Y_{ij}$$

Balance of final demand sector

$$H = P_K \sum_{j=1}^{3} K_j + P_L \sum_{j=1}^{3} L_j + P_W \sum_{j=1}^{3} W_j$$

$$H = \sum_{i=1}^{3} P_i (C_i + \sum_{j=1}^{3} I_{ij})$$

- Capital stock and investment
 - for dynamics

$$K_{j,t+1} = (1 - \delta_j) K_{j,t} + \sum_{i=1}^{3} I_{ij}$$

Formulation of AIM/Material

- Relationship between input and output
 - Production function
 - Demand function
 CES, Leontief, Cobb-Douglas, Linear, ...
- Household: Maximize utility
- Production sector: Maximize profit
 - → Find equilibrium solution

Dataset for AIM/Material Model

- IO table (commodity x commodity)
- U matrix (commodity x sector)
 - Disaggregate pollution management
- V matrix (sector x commodity)
- Investment by sector
 - Disaggregate pollution management
- Pollution flow by sector
 - Generation, treatment, discharge, recycle, ...
- Supply and demand of reused material

Input-Output table

household consumption, government consumption, investment, export

	commodity	1		commodity i	final demand	total output			
commodity 1									
i.		Distribution of produced commodity and							
commodity i			final demand is presented.						
value added	_								
total output		In order to produce commodity, what kind of inputs and							
			how much of them are necessary.						

U matrix (Use matrix)

	sector 1		sector j	final demand	total output		
commodity 1		Г					
:	Distribution of produced of to sectors and final demains						
commodity i		L	is presented.				
value added							
total output		What kind and how much					
		of input for production activity are necessary in sector.					

IO/U/V/investment/pollution/reuse

Revised U matrix

(disaggregate production and pollution management)

V matrix (Make matrix)

	commodity 1		com	modity i	total output
sector 1					
:					
sector j			114		
total output	How much of commodity is produced by sector judgments represented.				

IO/U/V/investment/ pollution/reuse

Investment by sector

	commodity	1		commodity i	total investment
sector 1					
:					
sector j		Llow		h of commodi	4. ,
total output	l li		ed t	h of commodi to sector j ented.	Ly

Pollution flow by sector

Pollution type

- Air pollution: SOx, NOx, CO2, ...
- Water pollution: BOD load, COD load, ...
- Solid waste: sludge, scrap metal, slag, ...
 - In the case of Japan, the number of the most detailed classification is almost 70.
- Other:
 - Toxic waste: Pb, dioxin, ...

Pollution flow by sector

IO/U/V/investment/pollution/reuse

Supply and demand of reused material

	com	nmodity 1		commodity i		eration of pollution	
pollution a							
÷							
pollution p							
total supply of							
reused commodity		How much of pollution					
		can be supplied as commodity i.					

IO/U/V/investment/pollution/reuse

Supply and <u>demand</u> of reused material

	sect	or 1		sector j	total supply of reused pollution		
commodity 1							
:							
commodity i							
total demand of reused commodity		How much of recycled commodity i					
		can be demanded in sector j.					

Optional Data for AIM/Material Model

- Energy balance table
 - Link physical data from energy balance table and monetary data from U matrix
- Other physical material data
 - Raw materials such as wood, paper, steel, ...
 - Link these physical data and monetary data

Not yet completed

Scenarios for AIM/Material Model

- Technology change
 - Energy efficiency, pollution generation, pollution management, recycled material input, and so on for new equipment (investment)
- Labor force
- Export and import
- Preference change
 - Final consumption, investment, ...

Application of AIM/Material Model

- Economic impacts due to environmental preservation
 - CO2 reduction (Kyoto target), waste reduction, waste water treatment, ...
- Mitigation by countermeasures
 - Environmental investment, preference change, new technology, tax reform, CDM, ...
- Link with bottom up model such as AIM/Emission
- → Detailed results will be represented in session 7.