AIM/Material Model

Features, model and necessary data

Toshihiko MASUI and Ashish RANA
National Institute for Environmental Studies

Session 4: Asia Pacific Integrated Model (AIM):
Introduction to Component Models (Cont.)

APEIS Capacity Building Workshop on
Integrated Environment Assessment in the Asia Pacific Region

October 24-26, 2002
Hotel Grand Inter-Continental, New Delhi, India
Coverage in this workshop

• **Summary (This session)**
 For understanding AIM/Material model
 – *What is AIM/Material model?*
 – *Model formulation*
 – *Necessary data for simulation*
 – *Future scenario*

• **Training (Session 5)**
 – *Operation of AIM/Material model*

• **Application (Session 7)**
 – *Application of AIM/Material model to India and Japan*
Features of AIM/Material Model

- Top-down model
- Domestic model
- Computable General Equilibrium model
- Recursive dynamics
- Treatment of pollution generation, management and discharge
- Activity of environmental industry and environmental investment
- Consistent material balance
- Link with technology model such as AIM/Emission model for technology progress

We have been developing AIM/Material for both CO2 and other environmental problems.
Structure of AIM/Material Model

• Production sector
 – Input: capital, labor, energy, other intermediate input, pollution (inputs for pollution management)
 – Output: commodity

• Household
 – Endowment: capital, labor
 – Demand: household final consumption, investment

• Government
 – Revenue: tax including environmental tax
 – Demand: government final consumption, government investment
Structure of AIM/Material Model

-What is AIM/Material Model?-
Procedure of model analysis

1. Formulation of model
2. Preparation of dataset in initial year, and calibration
3. Preparation of future scenarios
4. Simulation
 i. Reference case
 ii. Policy case
Social account matrix for AIM/Material

Model formulation

<table>
<thead>
<tr>
<th>Input</th>
<th>Production sector</th>
<th>Investment</th>
<th>Supply</th>
<th>Price</th>
<th>Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sector 1</td>
<td>Sector 2</td>
<td>Sector 3</td>
<td>Sector 1</td>
<td>Sector 2</td>
</tr>
<tr>
<td>Commodity 1</td>
<td>X_{11}</td>
<td>X_{12}</td>
<td>X_{13}</td>
<td>C_1</td>
<td>I_{11}</td>
</tr>
<tr>
<td>Commodity 2</td>
<td>X_{21}</td>
<td>X_{22}</td>
<td>X_{23}</td>
<td>C_2</td>
<td>I_{21}</td>
</tr>
<tr>
<td>Commodity 3</td>
<td>X_{31}</td>
<td>X_{32}</td>
<td>X_{33}</td>
<td>C_3</td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>L_1</td>
<td>L_2</td>
<td>L_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final disposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Commodity 1</td>
<td>Y_{11}</td>
<td>Y_{21}</td>
<td>Y_{31}</td>
<td></td>
</tr>
<tr>
<td>Commodity 2</td>
<td>Y_{12}</td>
<td>Y_{22}</td>
<td>Y_{32}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commodity 3</td>
<td></td>
<td></td>
<td>Y_{33}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formulation of AIM/Material

- Market equilibrium
 - Produced commodity
 \[P_i \left\{ \sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_i + \sum_{j=1}^{3} I_{ij} \right) \right\} = 0 \]
 \[P_i \geq 0 \]
 \[\sum_{j=1}^{3} Y_{ji} - \left(\sum_{j=1}^{3} X_{ij} + C_i + \sum_{j=1}^{3} I_{ij} \right) \geq 0 \]
 - production factor (capital, labor, ...)
 \[P_K \left\{ K^* - \sum_{j=1}^{3} K_j \right\} = 0, \quad P_K \geq 0, \quad \text{and} \quad K^* - \sum_{j=1}^{3} K_j \geq 0 \]
 \[P_L \left\{ L^* - \sum_{j=1}^{3} L_j \right\} = 0, \quad P_L \geq 0, \quad \text{and} \quad L^* - \sum_{j=1}^{3} L_j \geq 0 \]
 \[P_W \left\{ W^* - \sum_{j=1}^{3} W_j \right\} = 0, \quad P_W \geq 0, \quad \text{and} \quad W^* - \sum_{j=1}^{3} W_j \geq 0 \]
Formulation of AIM/Material

- **Balance of production sector**
 \[\sum_{i=1}^{3} P_i X_{ij} + P_K K_j + P_L L_j + P_W W_j = \sum_{i=1}^{3} P_i Y_{ij} \]

- **Balance of final demand sector**
 \[H = P_K \sum_{j=1}^{3} K_j + P_L \sum_{j=1}^{3} L_j + P_W \sum_{j=1}^{3} W_j \]
 \[H = \sum_{i=1}^{3} P_i (C_i + \sum_{j=1}^{3} I_{ij}) \]

- **Capital stock and investment**
 – for dynamics
 \[K_{j,t+1} = (1 - \delta_j) K_{j,t} + \sum_{i=1}^{3} I_{ij} \]
Formulation of AIM/Material

• Relationship between input and output
 – Production function
 – Demand function
 CES, Leontief, Cobb-Douglas, Linear, ...

• Household: Maximize utility
• Production sector: Maximize profit
 ➔ Find equilibrium solution
Dataset for AIM/Material Model

• IO table (commodity x commodity)
• U matrix (commodity x sector)
 – Disaggregate pollution management
• V matrix (sector x commodity)
• Investment by sector
 – Disaggregate pollution management
• Pollution flow by sector
 – Generation, treatment, discharge, recycle, ...
• Supply and demand of reused material
Input-Output table

<table>
<thead>
<tr>
<th></th>
<th>commodity 1</th>
<th>...</th>
<th>commodity i</th>
<th>final demand</th>
<th>total output</th>
</tr>
</thead>
<tbody>
<tr>
<td>commodity 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commodity i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution of produced commodity to production of commodity and final demand is presented.

In order to produce commodity, what kind of inputs and how much of them are necessary.

- Necessary data for simulation-

- household consumption, government consumption, investment, export
U matrix (Use matrix)

<table>
<thead>
<tr>
<th></th>
<th>sector 1</th>
<th>...</th>
<th>sector j</th>
<th>final demand</th>
<th>total output</th>
</tr>
</thead>
<tbody>
<tr>
<td>commodity 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commodity i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution of produced commodity to sectors and final demand is presented.

What kind and how much of input for production activity are necessary in sector.
Revised U matrix
(disaggregate production and pollution management)

<table>
<thead>
<tr>
<th>commodity 1</th>
<th>production</th>
<th>management of pollution a</th>
<th>...</th>
<th>management of pollution p</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>value added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data of original U matrix are disaggregate into production and pollution management.

- Necessary data for simulation-
V matrix (Make matrix)

<table>
<thead>
<tr>
<th></th>
<th>commodity 1</th>
<th>...</th>
<th>commodity i</th>
<th>total output</th>
</tr>
</thead>
<tbody>
<tr>
<td>sector 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sector j</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How much of commodity i produced by sector j is represented.
Investment by sector

<table>
<thead>
<tr>
<th></th>
<th>commodity 1</th>
<th></th>
<th>commodity i</th>
<th>total investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>sector 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sector j</td>
<td></td>
<td></td>
<td></td>
<td>How much of commodity invested to sector j is represented.</td>
</tr>
<tr>
<td>total output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pollution flow by sector

Pollution type

• Air pollution: SOx, NOx, CO2, ...
• Water pollution: BOD load, COD load, ...
• Solid waste: sludge, scrap metal, slag, ...
 – In the case of Japan, the number of the most detailed classification is almost 70.
• Other:
 – Toxic waste: Pb, dioxin, ...
Pollution flow by sector

<table>
<thead>
<tr>
<th></th>
<th>pollution generation</th>
<th>discharge into environment</th>
<th>self treatment</th>
<th>discharge into environment</th>
<th>reduction</th>
<th>recycle</th>
<th>other treatment</th>
<th>direct other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>sector j</td>
<td>pollution a</td>
<td>...</td>
<td>pollution p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supply and demand of reused material

<table>
<thead>
<tr>
<th></th>
<th>commodity 1</th>
<th>...</th>
<th>commodity i</th>
<th>total generation of reused pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pollution a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pollution p</td>
<td></td>
<td></td>
<td></td>
<td>[Blue highlighted cell]</td>
</tr>
<tr>
<td>total supply of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reused commodity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much of pollution can be supplied as commodity i.
Supply and demand of reused material

<table>
<thead>
<tr>
<th></th>
<th>sector 1</th>
<th>...</th>
<th>sector j</th>
<th>total supply of reused pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>commodity 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>commodity i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total demand of reused commodity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How much of recycled commodity i can be demanded in sector j.
Optional Data for AIM/Material Model

- Energy balance table
 - Link physical data from energy balance table and monetary data from U matrix
- Other physical material data
 - Raw materials such as wood, paper, steel, ...
 - Link these physical data and monetary data

Not yet completed
Scenarios for AIM/Material Model

- Technology change
 - Energy efficiency, pollution generation, pollution management, recycled material input, and so on for new equipment (investment)
- Labor force
- Export and import
- Preference change
 - Final consumption, investment, ...
Application of AIM/Material Model

• Economic impacts due to environmental preservation
 – CO2 reduction (Kyoto target), waste reduction, waste water treatment, ...

• Mitigation by countermeasures
 – Environmental investment, preference change, new technology, tax reform, CDM, ...

• Link with bottom up model such as AIM/Emission

➤ Detailed results will be represented in session 7.