APEIS Capacity Building Workshop on Integrated Environmental Assessment in the Asia Pacific Region October 2002

Demonstrative presentation of AIM/Impact model

Mr. Kiyoshi Takahashi, NIES, Japan Dr. Yasuaki Hijioka, NIES, Japan Dr. Amit Garg, Winrock International, India

Outputs of AIM/Impact

Objective of the course

- Introduction of standard procedures of impact assessment using AIM/Impact.
- Demonstration of specific procedures of assessment of potential crop productivity under anticipated climate change.
 - STEP1: Collection of input data
 - STEP2: Scenario development
 - STEP3: Parameter setting and simulation
 - STEP4: Display and analysis of the results
- Brief introduction of AIM/Impact [Country]

Standard work flow of impact assessment in AIM/Impact

- 1. Collection of input data and importing them into GIS database
 - GRASS GIS
- 2. Future scenario development
 - Interpolation
 - Simple climate model and Pattern scaling
- 3. Simulation
 - Parameter setting
- 4. Display and analysis of the results
 - Visualization
 - Aggregation
 - Feedback or higher impact

GRASS (Geographic Reseoucres Analysis Support System)

- Gegraphical Information System Software
- Run on unix oprating systems (Solaris, Linux, etc.)
- Advantage
 - Distributed on internet (Free)
 - Raster (gridded) data
 - Source codes available (C language)
 - Modules can be developed by users with the GRASS developers' library.
- Disadvantage
 - Unix
 - Inexcelent graphical user interface

Example of spatial data managed in GRASS GIS

GCM results

Data collection

- Current climate
 - Monthly or daily mean climatology
 - CRU/UEA LINK climatology (1901-1996, 0.5x0.5, monthly)
 - GEWEX/NASA ISLSCP (1987 and 1988, 1.0x1.0, monthly, daily or 6-hourly)
- Future climate projection
 - Output of General Circulation Models (GCMs)
 - IS92a simulations (IPCC-DDC)
 - SRES simulations (IPCC-DDC)
 - Simulation by CCSR/NIES
 - Output of Regional Climate Models (RCM)
 - Not available yet

Data collection

- Soil
 - Chemical and physical character of soil
 - FAO Soil Map of the World
- Landuse
 - Landuse classification derived from remote-sensing data
 - 1km x 1km GLCC (EDC/EROS/USGS)
- Population
 - Gridded population density
 - GPW2 (CIESIN/Colombia University, 2.5min)
 - LandScan2000 (1km x 1km)

Climate scenario

- Future changes of climate (temperature, rain, radiation, wind etc.) are deduced from GCMs results distributed at IPCC-DDC or provided by NIES/CCSR.
- In order to compromise with the very low resolution of GCM results, the results of GCMs are interpolated and current observed climatology is used for expressing spatial detail.
- For assessing various future path of GHG emission, "pattern scaling method" is employed to develop climate scenario.

Simulation

- Simulation models in AIM/Impact are Unix shell files which consist of GRASS commands originally developed using GRASS-GIS library and standard GRASS commands included in the GRASS distribution.
- Some models refer to the model parameter files for reading assumption or information other than spatial input data managed in GIS.

Models in AIM/Impact

- Water balance model
 - Penman PET
 - Thornthwaite PET
 - Surface runoff
- River discharge model
- Potential crop productivity model
- Water demand model
- Malaria potential model
- Vegetation classification model
- Vegetation move possibility model

Visualization and analysis

- Grasping spatial pattern of impact through visualization
 - Detection of critically damaged region
 - Time series analysis based on animation
- Spatial aggregation
 - Aggregation (spatial average) based on administrative boundaries
 - Time series trend
 - Linkage with the other assessment frameworks (ex. Economic model)

Demonstration of assessment of agricultural impact

- What will be done in the demonstration
 - Calculate potential crop productivity of rice and winter wheat in Asia.
 - Display some figures of the results focusing India.
- Objective
 - Demonstrate the procedure to assess climate change impact using AIM/Impact with going through simplified assessment processes step by step.

Interpolation (interpolation.sh)

NIES/CCSR GCM (5.6 x 5.6) Monthly mean temperature in 2050s under IS92a scenrio.

Spline interpolation 0.5 x 0.5

Temperature scenario (scenariocreate.sh)

LINK historical temperature (1961-1990)

Temperature scenario (2050s, CCSR/NIES model)

-10 0 10 20 30 40 (C°)

Precipitation scenario (scenariocreate.sh)

LINK historical precipitation (1961-1990)

Precipitation scenario (2050s, CCSR/NIES model)

OCT

NOV

1_{DEC}100

200

3000 (mm/mounth)

DEC

Example of parameter

Characteristics of crop growth

cropname	WheatSC	WheatWC	Whitepotato	PhaseolusbeanTEC	PhaseolusbeanTRC	Soybean	Rice	Cotton	Sweetpotato	Cassava	Pearlmillet	SorghumTRC	MaizeTRC	SorghumTEC	MaizeTEC
crop_kind	1	1	l 1	1	2	. 2	2	2 2	2 2	2 2	2 3	3	3	3 4	4
m_gp	100	200) 150	90) 120	120	130	160) 150	330) 90) 120) 120) 110	110
min_gp	90	90	90	50	50	75	80	150) 90) 180) 55	5 90) 70	90	70
m_lai	5	5	5 5	5 4	4	4	. 5	5 3	3 4.5	5 3	} 4	1 4	1 ∠	1 3	4
m_hi	0.4	0.4	1 0.6	0.3	0.3	0.35	0.3	0.07	7 0.55	5 0.55	5 0.25	0.25	5 0.35	0.25	0.35
bean	0	() () 1	1	1	C) () () () () () () 0	0
hi_kind	0	() () (0	0	C) () 1	1 1	() () () 0	0
gp_kind	1	() () 1	0	0	C) () () () () () () 2	2
thres_I	5	5	5 7	7	7	' 13	12	2 15	5 10) 10) 15	5 15	5 12	2 15	12
thres_u	25	25	5 30) 32	2 32	38	36	38	3 40) 35	5 4	5 38	3 40	38	40

Potential productivity of winter wheat

Estimated winter wheat potential productivity under current climate

1 1000 2000 3000 4000 (kg/ha)

Change of potential productivity of rice and wheat

Features of AIM/Impact [Country]

- Package of models, tools and data for scenario analysis of national-scale climate change impact assessment
- Executable on PC-Windows (no need to learn UNIX & GRASS)
- Bundled datasets for basic assessment
- Readily achievement of spatial analysis
- Detailed manual documents