Capture and Utilisation of CO₂

CO₂ Capture, Storage and Utilisation in Finland

CO₂:n erotus, varastointi ja hyötykäyttö Suomessa

Tiina Koljonen VTT Processes, Espoo, Finland *VTT Prosessit, Espoo*

Hanne Siikavirta Fortum Engineering Ltd, Vantaa, Finland *Fortum Engineering Ltd, Vantaa*

Ron Zevenhoven, Jens Kohlman, Arun B. Mukherjee Helsinki University of Technology, Espoo, Finland *Teknillinen korkeakoulu, Espoo*

Liisa Aarikka Tampere University of Technology, Tampere, Finland *Tampereen teknillinen korkeakoulu, Tampere*

Abstract

The objective of the projects 'CO₂ capture technologies and their potential' and 'Carbon dioxide storage and reuse' was to 1) review the state of the art of the technologies, 2) evaluate the long-term storage options of CO₂ for Finland and possibilities to reuse captured CO₂, 3) evaluate the potential and cost to reduce Finland's CO₂ greenhouse gas emissions by CO₂ capture, storage and utilisation, and 4) identify opportunities for Finnish technology.

Several CO_2 separation and capture technologies exist today to produce CO_2 for commercial markets. The capture technologies may be applied before of after combustion of fossil fuel depending on the capture concept. The main options considered for the long-term storage of CO_2 are underground geologic formations. These include old oil and gas fields, coal formations and saline water aquifers. Deep oceans represent large potential sink for CO_2 , but environmental uncertainties make it less feasible in the short term. Several demonstration projects are underway to evaluate technical, economical and environmental aspects of CO_2 sequestration. The estimated total cost with current technology for CO_2 sequestration ranges from 40–60 US\$ per tonne CO_2 avoided. Most of the industrial applications do not offer long-term sink of CO_2 , and currently the need is very small compared to the amount of emitted CO_2 .

 CO_2 capture and storage is more economical when applied on a large scale. The largest CO₂ emitting plants in Finland are oil refineries, coal-fired power plants and steel works. By applying CO₂ capture and storage technologies 80-90 per cent reduction of CO_2 emissions can be achieved. The costs were estimated only for the electricity sector. The CO_2 capture, transportation of CO_2 (1 000 km, onshore) and offshore storage would double the cost of electricity for natural gas and triple the cost for coal fired power plants compared to the current market price of electricity in Finland. According to this study, capturing CO₂ near the storage sites and investing in new cross-border electricity transmission capacity is a more feasible option. Storing CO₂ as solid mineral carbonate in Finland and integration of CO₂ capture concepts with industrial processes could be an option in the future.

Tiivistelmä

Projekteissa 'CO₂ erotusteknologioiden kartoitus ja potentiaali' ja 'Hiilidioksidin loppusijoitus ja hyötykäyttö' kartoitettiin CO₂-erotusteknologioiden ja -loppusijoituksen sekä -hyötykäytön nykytila. Tiedon avulla oli tavoitteena arvioida Suomen kasvihuonekaasupäästöjen vähentämisen potentiaalia ja kustannuksia sekä tunnistaa mahdollisuuksia suomalaiselle teknologialle.

On olemassa useita kaupallisia CO2-erotusteknologiota, joita voidaan soveltaa ennen polttoprosessia tai sen jälkeen. Geologisia muodostumia, kuten ehtyneitä öljy- ja kaasulähteitä, hiiliesiintymiä ja suolavesikerrostumia, pidetään pääasiallisena pitkän aikavälin CO₂-loppusijoitusvaihtoehtoina. Valtameret ovat merkittävä mahdollinen loppusijoitusvaihtoehto, mutta ekologiset epävarmuustekijät estävät CO₂-varastoinnin valtameriin lähitulevaisuudessa. Käynnissä on useita demonstraatioprojekteja, joissa arvioidaan CO2-varastoinnin teknis-taloudellista toteutettavuutta sekä ympäristö- ja turvallisuusnäkökohtia. CO2-erotuksen ja -varastoinnin kokonaiskustannusten arvioidaan teknologioiden nykytasolla olevan 40-60 US\$/ CO2 (vältetty). CO₂:n hyötykäyttö teollisuudessa ei useinkaan muodosta pitkäaikaista CO2-varastoa. Lisäksi tarve CO2:lle teollisuuden raaka-aineena on erittäin vähäinen verrattuna CO₂ päästöihin.

CO2-erotus ja -varastointi on kustannustehokkainta suuren mittakaavan sovelluksissa. Suomen suurimmat pistemäiset päästölähteet ovat öljynjalostamot, hiilivoimalaitokset sekä terästehtaat. CO₂erotus- ja varastointiteknologioita käyttämällä on mahdollista vähentää CO2 päästöjä 80-90 %. Kustannukset arvioitiin vain menetelmien soveltamiselle uusissa fossiilista polttoainetta käyttävissä lauhdevoimalaitoksissa. CO_2 -erotus, -kuljetus (1 000 km, mantereella) ja -varastointi nostivat sähkön tuotantokustannukset kaksin-kolminkertaiseksi (maakaasu-kivihiili) verrattuna sähkön nykyiseen markkinahintaan. CO2-erotus lähellä varastointipaikkaa ja investointi sähkönsiirtokapasiteettiin on tulosten perusteella kustannustehokkaampi vaihtoehto. Tulevaisuuden vaihtoehto Suomelle saattaisi olla myös CO2-varastointi mineraalikarbonaattina ja CO₂-erotuksen ja -varastoinnin integrointi teollisuuden prosesseihin.

1 Introduction

Worldwide emissions from fossil fuel combustion are about 25 Gt of CO₂ per year. Approximately one third of all CO₂ emissions due to human activity come from fossil fuels generating electricity. Several industrial processes also emit large amounts of CO₂, like oil refineries, cement works, and iron and steel production. The Intergovernmental Panel on Climate Change (IPCC) has indicated that emission reductions of 50-60% are required to avoid dangerous interference with the climate. To make such deep reductions in global emissions, for example, CO₂ emissions from power production should be reduced by 90% (IEA GHG 2001a). Fossil fuels may continue to be used if the CO₂ produced was captured and put into long-term storage. CO₂ capture and storage is already possible, and currently several demonstration projects are underway. Capturing and storing CO2 would not need major changes to processes, and widespread use of this technique could be achieved without the need for rapid change in the energy supply infrastructure.

In 1999, Finland's CO₂ emissions from fossil fuel combustion were 56.8 million tonnes of CO_2 -eq. The annual greenhouse gas (GHG) emissions, however, depend on hydropower production in the Nordic counties, the demand of heating energy and the degree of economic growth. On the average, in the 1990's the total GHG emissions have grown slightly, but the annual variation has been quite large due to variations in hydropower production and imported electricity. The total GHG emission of all Kyoto gases were roughly about the same level as in 1990 due to decreases of emission in other sectors like waste management and agriculture. The net growth of the forest biomass caused a biological sequestration impact varying annually between 10 and 35 million tonnes in the 1990's (Pipatti et al. 2001). Only a small fraction of this biological net sink can be accounted in the fulfilment of Kyoto Protocol commitments according to the agreements made at the Bonn and Marrakech negotiations between the parties of Climate Convention.

The objective of the projects 'CO₂ capture technologies and their potential' and 'Carbon dioxide storage and reuse' was to 1) review the state of the art of the CO₂ capture technologies, 2) evaluate the long-term storage options of CO₂ for Finland and possibilities to reuse captured CO₂, 3) evaluate the potential and cost to reduce Finland's CO₂ greenhouse gas emissions by CO₂ capture, storage and utilisation, and 4) identify opportunities for Finnish technology.

The costs were evaluated only for the electricity sector and new condensing fossil fuel fired power plants. Due to limited possibilities to store CO_2 in Finland, a part of the research was focused on the application of technologies in Finland and part of the work was concerned with application of CO_2 capture and storage technologies near the storage sites and importing the energy in the form of electricity or hydrogen to Finland.

2 Description of technologies

2.1 CO₂ capture technologies and concepts

A wide range of CO_2 separation and capture technologies exists today to produce CO_2 for commercial markets. The capture technologies may be applied before or after combustion depending on the capture concept. Concepts for capturing CO_2 can be divided into three main categories:

- 1. Post-combustion decarbonisation (Flue Gas Scrubbing)
- 2. Pre-combustion decarbonisation
- 3. Novel combustion concepts (Oxygen Combustion).

The main CO_2 capture technologies are absorption, adsorption, cryogenics and membranes.

Capture of CO_2 is best carried out at large point sources, such as power stations, oil refineries, petrochemical, fertiliser and gas processing plants, steel works and pulp and paper mills (U.S. DOE 2001).

Figure 1. CO₂ capture concepts in energy production (Joint Industry Carbon Capture Project 2002).

2.2 CO₂ storage

The captured CO_2 should be concentrated and pressurised into a liquid or gas stream suitable for transportation and sequestration. Major options considered for the final storage of CO_2 are deep underground geological formations, such as depleted oil and gas fields, deep coal seams, salt domes, rock caverns, and deep aqueous formations including saline formations. The geologic formations are widespread and have large potential for CO_2 sequestration. Also, deep oceans represent a large potential sink for anthropogenic CO_2 storage. Table 1 shows the estimates of global capacity of CO_2 storage reservoirs. CO_2 storage in hydrocarbon reservoirs should have economical advantages over storage in aquifers or ocean. Enhanced oil (EOR) recovery has the commercial benefit of sequestering CO_2 while increasing production from active oil fields. Deep, unmineable coal beds provide an opportunity to simultaneously sequester CO_2 and increase the production of natural gas (IEA GHG 2001b).

Advanced chemical approaches to CO_2 sequestration could allow gaseous CO_2 to be transferred into inert and long-lived solid materials. A suggestion of a process that would bind anthropogenic CO_2 is to convert naturally occurring mineral oxides to carbonates. For mineral carbonation the use of

Figure 2. Illustration of major options considered for the final storage of CO₂.

Table 1. Estimates of global capacity of CO_2 storage reservoirs compared with projected total emissions between 2000 and 2050, according to 'business as usual scenario' (IEA GHG 2001b, Edmonds et al. 2000, IEA GHG 2000a).

Carbon storage reservoir	Range, Gt CO ₂	% of emissions to 2050
Deep ocean	5 000–100 000	250–5 000
Deep saline reservoirs	400–10 000	20–500
Depleted gas reservoirs	800	40
Depleted oil reservoirs	120	5
Unmineable coal seams	> 15	> 1

magnesium based silicates, xMgO·ySiO₂·zH₂O is favoured, because they are worldwide available in huge amounts. These natural resources may be capable of binding all fossil fuel-bound carbon (Ziock 2002, Lackner and Ziock 2000). Magnesium silicates can be divided into several subgroups. The largest quantities are olivine, (Mg,Fe)SiO₄, and serpentine, Mg₃Si₂O₅(OH)₄. Large-scale flue gas CO₂ sequestration as mineral carbonates would, however, require enormous amounts of mineral, and it may be very energy consuming. Another option is the formation of CO₂ hydrates, an ice-like material (CO₂·nH₂O), which may be sequestered on the ocean floor (IEA GHG 2000b).

2.3 Direct utilisation of CO₂

Wide range physical and chemical properties of CO_2 make it a key part in countless industrial and chemical applications, either in gaseous, liquid or solid forms. The current industrial need is very small compared to the amount of emitted CO_2 . For example, in the USA, the industrial need of CO_2 is only about 2% of the emitted CO_2 , and about 80% of this amount is used in EOR. In countries, which do not have oil production, the industrial usage of CO_2 is usually considerably lower. Another problem is that most of the applications do not offer long term sink of CO_2 .

In utilisation of captured CO_2 , net reduction of CO_2 emissions takes place only if captured CO_2 replaces CO_2 that is at present produced from fossil fuel. The most examined alternatives of direct utilisation fall into three categories: industrial uses, chemical conversion to fuels, and biological conversion to fuels. Although direct utilisation of CO_2 would not solve the problem of global warming, the potential income that it might generate would reduce the burden of disposal (RUCADI 2001, Crabb 2000).

3 Development of technologies

The major barriers for applying CO_2 separation and capture technologies and concepts are, in addition to issues related to storage or utilisation of CO_2 , the high capital and operating costs and reduced efficiencies. The cost of avoided emissions for the capture stage (including pressurisation for transport) is 30–50 US\$/t CO₂ and the total cost (including also CO₂ storage and transport) 40–60 US\$/t CO₂ (IEA GHG 2001b). However, opportunities exist for significant reductions in costs and energy requirement, and there appear to be niches wherein CO₂ sequestration may be competitive among other long-term mitigation technologies, like large-scale renewable energy production.

Post-combustion technologies like monoethanolamine (MEA) absorption can be considered commercial, although there is still room for improvement. There are several R&D Programmes going on that look for possibilities to reduce the costs significantly in the future. The goal of Joint Industry Carbon Capture Project cofunded by several large oil companies, U.S. DOE, EU and Norway, for example, is to reduce the costs for CO₂ capture and storage in geological formations by 50 % when applied to retrofit and 75 % when applied to new build applications compared with current best available technology. There are also several demonstration projects underway to evaluate technical, economical and environmental feasibility of CO₂ storage in geological formations.

Significant cost reductions require radical changes to combustion technologies, and it is estimated that it will take 5 to 10 years before these concepts are translated into commercial processes (Joint Industry Carbon Capture Project 2002, U.S. DOE and NETL 2002)

- CO₂ capture and storage technologies and concepts are mainly being developed in the following programmes and countries:
- Joint Industry Carbon Capture Project (http://www.co2captureproject.com)

- IEA GHG R&D Programme (http://www.ieagreen.org.uk)
- EU funded projects
- US Carbon Sequestration Programme (http://fossil.energy.gov/coal_power/ sequestration)
- Japan (NEDO, http://www.nedo.go.jp/GET/ e11.html)
- Norway (Klimatek, http://program. forskningsradet.no/klimatek)

4 Potential and cost of CO₂ capture and storage for Finland

4.1 Industrial CO₂ capture and utilisation in Finland

In Finland the largest CO_2 consuming industries are pulp and paper, beverage, food processing and metal industries. Currently, industrial needs for CO_2 are mostly covered by captured CO_2 in Finland. Three CO_2 capture plants exist in connection with hydrogen, alcohol and calcium chloride production. The total capacity of these capture plants is about 70 000 tonnes of CO_2 per year. Finland's beverage industry also has additional CO_2 capture plants, which reduces the amount of purchased CO_2 for beverage production. CO_2 is also produced for greenhouses by burning fossil fuels.

Recently, especially in the Finnish pulp and paper industries, innovative CO₂ gas applications have been developed, and they are presently in use at a number of large mills. The CO₂ applications have been introduced especially for recycled paper. In food processing industries, CO₂ usage has also grown to increase food safety. In the 1990's, Finland's beverage sales increased from 230 million to 360 million litres. It is assumed that beverage production in Finland may still increase to some degree, but not to the same extent as in the 1990's. The potential to reuse captured CO_2 in industry is less than 0,5% of Finland's anthropogenic emissions. On the other hand, various industrial processes like pulp and paper manufacturing processes could offer niches, wherein CO₂ capture processes could become economical. The possible growing industrial need of CO_2 in Finland may not be covered by existing CO_2 production plants, which indicates that there might be niches for new processes to capture and produce CO_2 (Koljonen et al. 2002).

4.2 Large scale CO₂ capture and storage from Finland's perspective

As CO₂ capturing would be more economical on a large scale, the largest CO₂ emitting point sources were evaluated. The largest CO2 emitting plants in Finland are oil refineries, coal-fired power plants and steel works. Five to ten plants produce more than 1 million tonnes of CO₂ annually. In pulp and paper industry, an increased amount of biofuels used in heat and power generation has decreased CO₂ emissions considerably. The CO₂ emissions of coal-fired condensing power plants vary a lot from year to year. If the annual amount of rainfall is high in the Nordic countries, hydropower production is high and more electricity is imported to Finland. During dry seasons Finland exports electricity, which is mainly produced by condensing coal fired power plants. To meet the targets for greenhouse gas emission reduction in the long term, the CO₂ sequestration might be one option among many emission reduction alternatives. By applying CO₂ capture and storage technologies 80-90 per cent reduction of CO₂ emissions can be achieved.

In Finland, no suitable geologic formations exist to sequestrate CO_2 . Further, the oceans nearby Finland are not deep enough for considering CO_2 storage in oceans. The nearest potential CO_2 sequestration sites are offshore oil and gas fields and saline aquifers in the North Sea and Barents Sea. This would mean a 500 to 1 000 km CO_2 transmission depending on the location of the CO_2 capture plant (Koljonen et al. 2002).

Storing CO_2 as mineral carbonate could be an option for Finland, since large resources of suitable silicates exist in Finland as natural minerals and as wastes of mining industry. Most of the mineral deposits are found in Central and Northern Finland.

However, mineral carbonation may be very energy consuming and thus in a recent study (Kohlmann et al. 2002) reaction pathways with minimum energy input were addressed. It was concluded that the mineral carbonation process has to involve the release or activation of the mineral's MgO content before the reaction with CO_2 to MgCO₃, which could imply a two-stage process. Water catalyses the carbonation reaction somewhat, which makes the use of serpentine (its 10-14%-wt crystal water is released) more attractive than other MgO-containing minerals (olivine, fosterite). CO₂ will have to be transported to a suitable mineral deposit since transporting minerals to/from CO₂ emission sources will present unacceptable costs. Fortunately, process integration with mining activities may be very advantageous from cost and energy consumption points of view, possibly allowing for, e.g., higher valuable metal extraction rates as well. Further research will concentrate on reaction kinetics and large-scale integrated processing based on direct, dry carbonation of MgO-containing mineral with pressurised CO₂ from a separate capture process (Kohlmann et al. 2002).

4.3 Costs of application of CO₂ capture and storage in electricity production in Finland

4.3.1 New fossil fuel fired power plant in Finland with CO_2 capture

The economic feasibility of CO₂ capture by conventional chemical absorption was evaluated for 660-790 MW, conventional natural gas fired combined cycle (NGCC) and for 360-500 MW, pulverized coal once through boiler (PF). The CO₂ capture process was integrated with a green field power plant. The estimated costs of 1 000 km pipeline transmission to storage site and offshore storage of CO₂ were included in the evaluation. The data was collected form literature for power plant concepts and for CO₂ capture process. For transmission and storage of CO₂ and energy, a spreadsheet-based model recently published by IEA Greenhouse Gas R&D Programme (IEA GHG 2002) was used as well. The results of the evaluations are presented in Figures 3 and 4. The electricity market price is the average electricity price in the Nordic Power Exchange, which is the world's

Figure 3. Power production costs for a condensing coal fired power plant with CO_2 capture (includes gas compression), 1 000 km onshore pipeline transmission of CO_2 and offshore CO_2 geological storage (discount rate 5%, plant life 25 years, operating time annually 8 000 h).

Figure 4. Power production costs for a condensing natural gas fired power plant with CO_2 capture (includes gas compression), 1 000 km onshore pipeline transmission of CO_2 and offshore CO_2 geological storage (discount rate 5%, plant life 25 years, operating time annually 8 000 h).

first international commodity exchange for electrical power.

As shown in the figures 3 and 4, the production cost of electricity for coal fired power plant would be about three times higher than the average electricity market price in Finland if the investment and operating costs of CO_2 capture, transmission and storage were included. For natural gas fired power plant, the corresponding electricity production cost would be about two times higher than the current market price of electricity (Koljonen et al. 2002).

4.3.2 Application of technologies closer to storage sites as an alternative

Application of technologies closer to the storage sites was compared with application of technologies in Finland. The options included in the study were:

1. Natural gas is imported by existing pipeline and electricity produced by NGCC in Finland. The captured CO_2 is transported by a 1 000 km onshore pipeline and sequestered offshore.

- Carbon-free fuel, i.e. hydrogen, is imported into Finland by a 1 000 km onshore pipeline. In this scenario, fuel is decarbonized near the storage site and CO₂ is sequestered offshore.
- Electricity is produced near the sequestration place and imported into Finland. CO₂ is sequestered offshore. Cross-border DC electricity transmission capacity is increased by a given amount.

In figure 5, investment costs of the above scenarios are shown. In the calculations, fuel efficiency has been increased to cover the losses of electricity transmission, initial gas compression and/or gas transmission. Preliminary results indicated that CO_2 transport and electricity transmission would be the most feasible options with such long transmission distances. Considering environmental and safety issues, electricity transmission would become the most feasible option. However, it should be noted, that the investment costs of hydrogen alternative have remarkable uncertainty, and a more detailed analysis should be performed before final conclusions (Koljonen et al. 2002).

Figure 5. Comparison of investment costs of three CO₂ management scenarios for Finland.

4.4 Opportunities for Finnish technology

Because of the relatively short history of the development of CO_2 capture technologies and concepts, there is still room for new ideas and need to improve the existing concepts. Opportunities exist e.g. in developing Finnish power plant technologies into a zero or low- CO_2 emitting direction. Also, development of CO_2 capture technologies and concepts that can be integrated to various industrial process, especially processes that employ Finnish technology, could offer niches, wherein CO_2 capture would become economical.

Storing CO₂ as mineral carbonate could be an option, since large resources of suitable silicates exist in Finland as natural minerals and as wastes of mining industry. The most important positive feature, which justifies further work on improvement of this technology, is that CO₂ as MgCO₃ is a stable compound and environmentally acceptable solution for a long term storage of CO₂. It is also the only currently known alternative for Finland to store CO₂ (Kohlmann et al. 2002, Koljonen et al. 2002).

5 Discussion and conclusions

The lack of long-term CO₂ storage sites in Finland, together with long transmission distances to the closest storage sites abroad would be the greatest barriers to overcome before the implementation of the CO₂ capture and long-term storage technologies in emission management. The production cost of electricity would be approximately doubled for NGCC with CO₂ capture, onshore transmission and offshore storage. For coal fired power plant, the corresponding electricity production cost would be even higher. According to this study, capturing CO₂ near the storage sites and investing in new crossborder electricity transmission capacity seems to be a more feasible option. Mineral carbonation could be a future option for Finland, but the reaction kinetics of carbonation process still has to be investigated before any final conclusions could be made.

The potential to reuse captured CO_2 in industry is less than 0.5% of Finland's anthropogenic emissions. On the other hand, various industrial processes like pulp and paper manufacturing processes, could offer niches, wherein CO_2 capture process could become economical. However, quite few CO_2 reuse options in Finland offer long-term carbon sinks.

There is still room for new ideas and for improvement of existing CO_2 capture technologies and concepts, especially pre-combustion and novel combustion concepts. Opportunities exist e.g. in developing Finnish power plant technologies into zero or low-CO₂ emitting direction. Integration of CO_2 capture technologies and concepts in industrial processes is less studied a subject compared with energy production. Developing CO_2 capture technologies and concepts that can be integrated to various industrial processes, especially processes that employ Finnish technology, could offer new possibilities in the future.

Publications and reports made under the project

- Aarikka, L. 2001. Capture of Carbon Dioxide from Power Plants, M.Sc. Thesis, Tampere University of Technology, Department of Environmental Engineering/Energy and Process Engineering
- Kohlmann, J., Zevenhoven, R. 2001. The removal of CO₂ from flue gases using magnesium silicates, in Finland, In Proc. of the 11th Int. Conf. on Coal Science, San Francisco (CA), Sept. 30–Oct. 5, 2001 (CD-ROM)
- Kohlmann, J., Zevenhoven, R., Mukherjee, A.B. 2002. Carbon dioxide emissions control by mineral carbonation: the option for Finland, In Proceedings of INFUB - 6th European Conference on Industrial Furnaces and Boilers, Vol. 2, Estoril (Portugal), April 2-5, 2002.
- Kohlmann, J., Zevenhoven, R., Mukherjee, A.B., Koljonen, T. 2002. Mineral carbonation for long-term storage of CO₂ from flue gases, Helsinki University of Technology, Espoo. Report TKK-ENY-9. (*Final report of the subproject 'Mineral Carbonation for CO2 Removal from Flue Gases', available at http://eny.hut.fi/*)
- Koljonen, T., Siikavirta, H., Zevenhoven, R. 2002. CO₂ Capture, Storage and Utilisation in Finland, Project Report PRO4/T7504/02 (*Final report of the projects 'CO₂ capture technologies and their potential' and 'Carbon dioxide storage and reuse', available at http://www.vtt.fi/ene/Climtech*)

- Koljonen, T., Siikavirta, H., Zevenhoven, R., Savolainen, I. 2002. CO₂ Capture, Storage and Utilisation in Finland, conference paper will be published in Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan, September 30-October 4, 2002
- Zevenhoven, R., Kohlmann, J. 2001. CO₂ storage by mineral carbonation in Finland (CO₂ lagring genom mineral karbonering i Finland)" *invited lecture by Ron Zevenhoven* In Proc. of the Second Minisymposium on CO₂ Capture and Storage, Gothenburg (Sweden), October 26, 2001 pp. 13-18 (*available at http://www.entek.chalmers.se/* ~*anly/symp/symp* 2001.html)
- Zevenhoven, R., Kohlmann, J. 2002a. CO₂ sequestration by magnesium silicate mineral carbonation in Finland, In Proceedings of R'02 Recovery Recycling Re-integration, Geneva (Switzerland) February 12-15, 2002, paper 220 (CD-ROM)
- Zevenhoven, R., Kohlmann, J. 2002b. Reaction kinetics of magnesium oxide-based mineral carbonation for CO₂ sequestration, *under preparation, to be submitted to a technical journal*
- Zevenhoven, R., Kohlmann, J., Mukherjee, A.B. 2002. Direct dry mineral carbonation for CO₂ emissions reduction in Finland, In Proceedings of the 27th Int. Tech. Conf. on Coal Utilization and Fuel Systems, Clearwater (FL), March 4-7, 2002, pp. 743-745 (CD-ROM)

References

- Crabb, C. 2000. Versatile CO₂ continues to expand into new geographic markets and industrial applications. Chemical Engineering, Vol. 107, No. 7, pp.49-52.
- Edmonds, J.A., Freund, P., Doodley, J.J. 2000. The role of carbon management technologies in addressing atmospheric stabilization of greenhouse gases. 5th International Conf. on Greenhouse Gas Control Technologies, 14–16 August 2000. Cairns, Australia.
- IEA GHG 2000a. Barriers to overcome in implementation of CO₂ capture and storage (1) Storage in disused oil and gas fields. IEA Greenhouse Gas R&D programme. (Report Number PH3/22) 116 p.
- IEA GHG 2000b. Issues underlying the feasibility of storing CO₂ as hydrate deposits. IEA Greenhouse Gas R&D programme. (Report Number PH3/25) 29 p.

- IEA GHG 2001a. 10th Anniversary 1991-2001. IEA Greenhouse Gas R&D Programme. 35 p.
- IEA GHG 2001b. Putting carbon back in the ground. IEA Greenhouse Gas R&D Programme. 26 p.
- IEA GHG 2002. Transmission of CO2 and energy. IEA Greenhouse Gas R&D Programme. (Report Number PH4/6). 139 p.
- Joint Industry Carbon Capture Project 2002. WWW pages. Referred in January 2002. http://www.co2captureproject.com
- Kohlmann, J., Zevenhoven, R., Mukherjee, A.B., Koljonen, T. 2002. Mineral carbonation for longterm storage of CO₂ from flue gases, Helsinki University of Technology, Espoo. Report TKK-ENY-9. (*Final report of the subproject Mineral Carbonation for CO2 Removal from Flue Gases, available* http://eny.hut.fi)
- Koljonen, T., Siikavirta, H., Zevenhoven, R. 2002. CO2 Capture, Storage and Utilisation in Finland, Project Report PRO4/T7504/02 (Final report of the projects CO₂ capture technologies and their potential and Carbon dioxide storage and reuse, available at http://www.vtt.fi/ene/Climtech)
- Lackner, K., Ziock, H. 2000. From low to no emissions. Modern Power Systems, 2000. Vol. 20, n:o 3, p. 31– 32.

- Pipatti, R. 2001. Greenhouse gas emissions and removals in Finland. Technical Research Centre of Finland, Espoo. Research notes 2094.
- RUCADI 2001. Progress reports of EU Rucadi project (BRRT-CT98-5089). WWW pages. http://www.co2rucadi.uniba.it
- U.S. DOE 2001. Carbon Sequestration- Research and Development. WWW pages. Referred in January 2002. http://fossil.energy.gov./coal_power/sequestration/reports/rd/ chap2.pdf
- U.S. DOE and NETL 2002. Carbon Sequestration Technology Roadmap 2002. WWW pages. Referred in January 2002. http://www.netl.doe.gov/coalpower/ sequestration/ pubs/CS_roadmap_0115.pdf
- Woodhill 2002. Transmission of CO₂ and energy. Report Number PH4/6, March 2002. IEA Greenhouse Gas R&D Programme.
- Ziock, H. 2002. Zero emissions coal to hydrogen. USA: Los Alamos National Laboratory. Referred in June 2002. Available at: http://www.lanl.gov/energy/ est/zec/ index.html