

Assessing the hydrological impacts of climate change at the local scale: Dynamical coupling of a regional climate model to a hydrological model

Martin Drews¹, Søren H. Rasmussen¹, Jens Hesselbjerg Christensen¹, Michael B. Butts², Karsten H. Jensen³, and Jens Christian Refsgaard⁴

¹Danish Climate Centre, Danish Meteorological Institute ²DHI ³Department of Geography and Geology, University of Copenhagen ⁴Geological Survey of Denmark and Greenland

- Motivation
- Hydrological modelling and climate change
- Dynamical coupling of a RCM to a hydrological model

The second second

Conclusions

Mean global precipitation changes

65

From IPCC WG1-AR4 (2007): Relative changes in precipitation (in percent) for the period 2090–2099 vs.1980–1999

DMi

Møde xx – CPH 2017

CINTS

Key climate change impacts on hydrological cres systems

- Increased/reduced availability of freshwater (e.g. precipitation)
- Extreme precipitation
- Draughts
- Evapotranspiration

Examples of hydrogical impacts of climate change:

- Water availability (irrigation, hydropower, etc.)
- Changes in groundwater head
- Changes in surface water, e.g. river runoff
- Increased risk of floods
- Transport of pollutants

Møde xx – CPH 2017

Example: Groundwater head

65

Courtesy of: Geological Survey of Denmark and Greenland; Roosmalen et al.

DMi

Møde xx – CPH 2017

Example: Mean annual discharge

'ES

6

Courtesy of: Geological Survey of Denmark and Greenland; Roosmalen et al.

DMi

Møde xx – CPH 2017

Coupling an RCM to hydrological models

- Further downscaling is (often) needed
- Bias correction
- Different temporal resolution
- Propagation of uncertainties (!)

In traditional hydrological modelling, feedbacks from the surface to the atmosphere are typically neglected!

Møde xx – CPH 2017 Hydrological Modelling for Assessing Clir

Need for bias correction

Observed (1961-1990)

HIRHAM4 RCM (12 km)

Dmi

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

and the second second

"Drizzle" problem

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

The state of the second

HYACINTS coupled modelling system

65

11

HIRHAM5 (DMI)

Regional climate model

MIKE SHE (DHI)

Physically based, commercial, hydrological model (SVAT module)

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

and the second second second

Two-way dynamical coupling

Air temperature Precipitation Wind speed Relative humidity Global radiation Air pressure

HIRHAM5

Latent heat flux Sensible heat flux Surface temperature

MIKE SHE

12

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

and the second

Model coupling - outline

DMi

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

and the second second second

Model coupling - outline

Møde xx – CPH 2017

Linking model grids

- HIRHAM: rotated latitute-longitude, 10-50 km
- MIKE SHE: UTM, 500-1000 m
- MIKE SHE domain is a subset of the HIRHAM domain

- HIRHAM to MIKE SHE is handled by OpenMI (interpolation)
- MIKE SHE to HIRHAM is handled by HIRHAM

Need for further downscaling, bias correction?

Møde xx – CPH 2017

- FIFE area, 15 x 15 km², Kansas, USA
- 10 meteorological stations
- 22 flux stations
- 32 soil moisture stations

- MIKE SHE model calculations (2 km grid)
 - Forced by observations
 - Forced by HIRHAM (one-way coupling)
 - Forced by HIRHAM (two-way coupling)
 - HIRHAM calculations

From: Søren H. Rasmussen, DMI

Møde xx – CPH 2017

Test: Evapotranspiration

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

The lot of the lot of

Test: Evapotranspiration

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

ATTACK THE PARTY

Test: Evapotranspiration

Møde xx – CPH 2017

Hydrological Modelling for Assessing Climate Change Impacts at Different Scales - www.hyacints.dk

The second in the second

- One-way RCM-hydrological model coupling
 - Preliminary results are very encouraging added value for hydrological modelling
- Dynamic RCM-hydrological model coupling
 - Technically quite challenging
 - Different scales
 - Direct coupling has been implemented
 - Need for further downscaling and/or bias correction will be investigated
 - Importance of feedback to the atmosphere will be investigated

Thank you for your kind attention

Møde xx – CPH 2017

DMi